DOI QR코드

DOI QR Code

First-Order Perturbation Solutions for Liquid Pool Spreading with Vaporization

누출된 액체의 증발과 확산에 관한 1차 섭동해

  • Kim, Myung-Bae (Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials) ;
  • Do, Kyu-Hyung (Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials) ;
  • Han, Yong-Shik (Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials) ;
  • Choi, Byung-Il (Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials)
  • 김명배 (한국기계연구원 플랜트안전신뢰성연구실) ;
  • 도규형 (한국기계연구원 플랜트안전신뢰성연구실) ;
  • 한용식 (한국기계연구원 플랜트안전신뢰성연구실) ;
  • 최병일 (한국기계연구원 플랜트안전신뢰성연구실)
  • Received : 2010.10.19
  • Accepted : 2010.11.30
  • Published : 2011.03.01

Abstract

We solve the simple physical model for liquid pool spreading with vaporization semi-analytically for the first time, using perturbation techniques. The results are compared with those obtained using numerical methods. We use the evaporation rate per unit area as a perturbation parameter, and first-order solutions are obtained for continuous and instantaneous release. The two solutions are nearly identical with respect to the pool radius. The pool volumes are nearly the same at the early stage of the spread and then start to diverge.

증발하면서 원형으로 퍼져가고 있는 액체에 대한 모델을 지배하는 연립 상미분 방정식은 지금까지 수치해석적인 방법으로 풀어 왔는데 본 연구에서 섭동해를 최초로 구하였다. 액체의 순간적인 누출과 연속적인 누출에 대하여 섭동 변수로써 단위면적 당 증발률을 사용하여 1차항까지 섭동해를 구하였다. 1차 섭동해의 계산 결과 풀의 부피에 대하여 초기에는 수치해와 잘 일치 하였으나 후기에는 약간의 차이가 존재하였으며 풀의 반경에 대하여는 두가지 종류의 해가 거의 일치 하였다.

Keywords

References

  1. Venetsanos, A. G. and Bartzis, J. G., 2005, "CFD Modelling of Large-Scale LH2 Spills in Open Environment," Proceedings of International Conference on Hydrogen Safety, Pisa, Italy, pp. 125-136.
  2. Stein, W. and Ermak, D. L., 1980, "One-Dimensional Numerical Fluid Dynamics Model of the Spreading of Liquefied Gaseous Fuel (LGF) on Water," Lawrence Livermore National Laboratory, UCRL-53078.
  3. Verfondern, K. and Dienhart, B., 1997, "Experimental and Theoretical Investigation of Liquid Hydrogen Pool Spreading and Vaporization," Int. J. Hydrogen Energy, Vol. 22, No. 7, pp. 649-660. https://doi.org/10.1016/S0360-3199(96)00204-2
  4. Brandeis, J. and Kansa, E., 1983, "Numerical Simulation of Liquefied Fuel Spills: I. Instantaneous Release into a Confined Area,” Int. J. Num. Methods in Fluids, Vol. 3, pp. 333-345. https://doi.org/10.1002/fld.1650030404
  5. Brandeis, J. and Ermak, D., 1983, "Numerical Simulation of Liquefied Fuel Spills:II. Instantaneous and Continous LNG Spills on an Unconfined Water Surface," Int. J. Num. Methods in Fluids, Vol. 3, pp. 347-361. https://doi.org/10.1002/fld.1650030405
  6. Briscoe, F. and Shaw, P., 1980, "Spread and Evaporation of Liquid," Prog. Energy Comb. Sci., Vol. 6, pp. 127-140. https://doi.org/10.1016/0360-1285(80)90002-7

Cited by

  1. High-Order Perturbation Solutions of Liquid Pool Spreading with Continuous Spill vol.36, pp.9, 2012, https://doi.org/10.3795/KSME-B.2012.36.9.907