DOI QR코드

DOI QR Code

Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

  • Kang, Chang-Geun (Department of Pharmacology & Toxicology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hah, Dae-Sik (Gyeongnam Livestock Promotion Institute Middle-branch) ;
  • Kim, Chung-Hui (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, Young-Hwan (Department of Microbiology & Immunology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Eui-Kyung (Department of Pharmacology & Toxicology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Jong-Shu (Department of Pharmacology & Toxicology, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2011.02.07
  • Accepted : 2011.02.15
  • Published : 2011.03.01

Abstract

The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC). The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute). All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from $0.6\;{\mu}g/ml$ to $5000\;{\mu}g/ml$. The lowest MIC ($0.6\;{\mu}g/ml$) and MBC ($1.22\;{\mu}g/ml$) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively.

Keywords

References

  1. Al-Bakri, A.G. and Afifi, F.U. (2007). Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J. Microbiol. Methods, 68, 19-25. https://doi.org/10.1016/j.mimet.2006.05.013
  2. Alma, M.H., Mavi, A., Yildirim, A., Digrak, M. and Hirata, T.(2003). Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biochem. Pharmacol. Bull., 26, 1725-1729. https://doi.org/10.1248/bpb.26.1725
  3. Andrade, S.F, Cardoso, L.G.V., Carvalho, J.C.T. and Bastos, J.K. (2007). Antiinflammatory and antinociceptive activities of extract, fractions and populnoic acid from bark wood of Austroplenckia populnea. J. Ethnopharmacol., 109, 464-471. https://doi.org/10.1016/j.jep.2006.08.023
  4. Cha, B.C, Lee, S.K., Lee, H.W., Lee, U., Choi, M.Y., Rhim, T.J. and Park, H.J. (1998). Antioxidative effects of medicinal plants in Korea. Korean J. Pharmacol., 28, 15-20.
  5. Conner, D.E. (1993). Naturally occurring compounds. In Antimicobials in foods, Davidson, P.T. and Branen, A.L. (Eds.). Marecl Dekker , New York, pp. 441-468.
  6. Cowan, M.M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12, 564-582.
  7. Dordevic, S., Petrovic, S., Dobric, S., Milenkovic, M., Vucicevic, D., Zizic, S. and Kukic, J. (2007). Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Enthnopharmacol., 109, 458-463. https://doi.org/10.1016/j.jep.2006.08.021
  8. Dorman, H.J.D. and Deans, S.G. (2000). Antimicrobials agent from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88, 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  9. Garza, B.A.A., Gonzalez, G.M.G., Aranda, R.S., Torres, N.W. and Galindo, V.M.R. (2007). Screening of antifungal activity of plants from the northeast of Mexico. J. Ethnopharmacol., 114, 468-471. https://doi.org/10.1016/j.jep.2007.08.026
  10. Hostettman, K. (1998). Strategy of the biological and chemical evaluation of plant extracts. IUPAC, 70, 21-22.
  11. Inatani, R., Nakatani, N. and Fuwa, H. (1996). Antioxidative effect the constituent of rosemary and their derivatives. Agric. Biol. Chem., 47, 521-525.
  12. Kim, J., Marshal, M.R. and Wei, C. (1995). Antibacterial activity of some essential oil components against five food borne pathogens. J. Agric. Food Chem., 4, 2839-2845.
  13. Kim, D.W., Son, K.H., Chang, H.W., Bae, K.S., Kang, S.S. and Kim, P.P. (2004). Anti-inflammatory activity of Sedum Kamtschaticum. J. Enthnopharmacol., 90, 409-414. https://doi.org/10.1016/j.jep.2003.11.005
  14. Kotzekidou, P., Giannakidis, P. and Boulamatsis, A. (2008). Antimicrobial activity of some plant extracts and essential oils against food borne pathogens in vitro and on the fate of inoculated pathogens in chocolate. Food Sci. Tech., 41, 119-127.
  15. Kuete, V., Nguemeving, J.R., Beng, V.P., Azebaze, A.G..B., Etoa, F.X., Meyer, M., Bodo, B. and Nkengfack, A.E. (2007). Antimicrobial activity of the methanolic extracts and compounds from vismia laurentii De Wild (Guttiferae). J. Ethnopharmacol., 109, 372-379. https://doi.org/10.1016/j.jep.2006.07.044
  16. Kuete, V., Wabo, G.F., Ngameni, B., Mbaveng, A.T., Metuno, R., Etoa, F.X., Ngadjui, B.T., Beng, V.P., Kukic, J., Popovic, V., Petrovic, S., Mucaj, P., Ciric, A., Stojkovic, D. and Sokovic, M. (2008). Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem., 10, 861-868.
  17. Kumar, A. and Roy, S.K. (1972). Some medicinal ferns Neterhat hills (Bihar). J. Sci. Res., 23, 139-142.
  18. Lin, J.Y. and Tang, C.Y. (2007). Determination of total phenolic and flavonoid conents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem., 101, 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
  19. Locher, C.P., Burch, M.T, Mower, H.F., Berestecky, J., Davis, H., Van Pole, B., Lasure, A., Vanden Berghe, D.A. and Vietinck, A.J. (1995). Anti-microbial activity and anticomplement activity of extracts obtained from selected Hawaiian medicinal plants. J. Ethnopharmacol., 49, 23-32. https://doi.org/10.1016/0378-8741(95)01299-0
  20. Marcucci, M.C., Ferreres, F., Viguera, C., Bankova, V.S., Castro, S.L. and Dantas, A.P. (2001). Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol., 74, 105-112. https://doi.org/10.1016/S0378-8741(00)00326-3
  21. Meyer, J.J.M. and Lall, N. (2007). Antimicrobial activity of the methanolic extracts, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). J. Ethnopharmacol., 114, 54-60. https://doi.org/10.1016/j.jep.2007.07.025
  22. Mims, C.A., Playfair, J.H.L., Roitt, I.M., Wakelin, D. and Williams, R. (1993). Antimicrobials and chemotherapy. Medi. Microbiol. Rev., 35, 1-3.
  23. Ming, L.I., Cheuk, M.Y., Lei, C., Mei, W., Xuemei, G., Ka, H.L., Tian, W., Yn, T.S. and Johan, E.S. (2006). Repair of infracted mycocardium by an extract of Japonicum with dual effects on angiogenesis and myogenesis. Clin. Chem., 52, 1460-1468. https://doi.org/10.1373/clinchem.2006.068247
  24. Miyata, M., Koyama, T. and Yazawa, K. (2010). Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. J. Nutr. Sci. Vitaminol., 56, 150-156. https://doi.org/10.3177/jnsv.56.150
  25. Nikaido, H. (1996). Outer membrane. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt, F.C. (Eds.). ASM Press , Washington DC, pp. 29-47.
  26. NCCLS (1999). National Committee for Clinical Laboratory Standards, 1999. Performance standards for antimicrobial susceptibility testing. In Ninth Informational Supplement, Wayne, Pennsylvania M 100-S9.
  27. Okolo, C.O., Johnson, P.B., Abdurahman, E.M., Aguye, I.A. and Hussaini, I.M. (1995). Analgesic effect of Irvingia gabonensis stem bark extract. J. Ethnopharmacol., 45, 125-129. https://doi.org/10.1016/0378-8741(94)01199-A
  28. Pottumarthy, S., Fritsche, T.R. and Jone, R.N. (2006). Activity of gemifloxacin tested against Neisseria gonorrheae isolates including antimicrobial-resistant phenotypes. Digno. Microbiol. Infect. Dis., 54, 127-134. https://doi.org/10.1016/j.diagmicrobio.2005.08.013
  29. Rabe, T. and Staden, J.V. (1997). Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol., 56, 81-87. https://doi.org/10.1016/S0378-8741(96)01515-2
  30. Rajeshwar, Y., Gupta, M. and Mazumder, U.K. (2005). In vitro lipid peroxidation and antimicrobial activity of Mucuna pruriens seeds. Iranian J. Pharmacol. Therapeu., 4, 32-35.
  31. Rates, S.M.K. (2001). Plants as source of drugs. Toxicon., 39, 603-613. https://doi.org/10.1016/S0041-0101(00)00154-9
  32. Rezende, G.P.S., Pimenta, F.C. and Costa, L.R.S. (2006). Antimicrobial activity of two Brazilian commercial propolis extracts. Braz. J. Oral Sci., 5, 967-970.
  33. Singh, M., Singh, N., Khare, P.B. and Rawat, A.K.S. (2008). Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. J. Ethnopharmacol., 115, 327-329. https://doi.org/10.1016/j.jep.2007.09.018
  34. Webster, D., Taschereau, P., Belland, R.J., Sand, C. and Rennie, R.P. (2008). Antifungal activity of medicinal plants extracts; preliminary screening studies. J. Ethnopharmacol., 115, 140-146. https://doi.org/10.1016/j.jep.2007.09.014
  35. Wu, N., Zu, Y., Fu, Y., Kong, Y., Zhao, J., Li, X., Li, J., Wink, M. and Efferth, T. (2010). Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J. Agric. Food Chem., 58, 4737-4743. https://doi.org/10.1021/jf904593n
  36. Zgoda, J.R. and Porter, J. (2001). A convienient microdilution methods for screening natural products against bacteria and fungi. Pharmacol. Bio., 39, 221-225. https://doi.org/10.1076/phbi.39.3.221.5934

Cited by

  1. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046128
  2. Antibacterial Effects of Zataria multiflora, Ziziphus, Chamomile and Myrtus communis Methanolic Extracts on IMP-Type Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa vol.11, pp.1, 2016, https://doi.org/10.5812/archcid.32413
  3. Antimicrobial, Antioxidant, and Cytotoxicity Properties of Selected Wild Edible Fruits of Traditional Medicinal Plants vol.23, pp.1, 2017, https://doi.org/10.1080/10496475.2016.1261387
  4. elv609 Extract Treated Cotton Fabric for Diabetic Wound Care vol.45, pp.3, 2017, https://doi.org/10.5941/MYCO.2017.45.3.178
  5. Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00051
  6. Antifungal and Anti-mycotoxigenic Impact of Eco-Friendly Extracts of Wild Stevia vol.18, pp.8, 2018, https://doi.org/10.3923/jbs.2018.488.499
  7. Antimicrobial Activity of NCR Plant Peptides Strongly Depends on the Test Assays vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02600
  8. heartwood vol.31, pp.5, 2018, https://doi.org/10.1556/1006.2018.31.5.2
  9. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo pp.1867-1314, 2019, https://doi.org/10.1007/s12602-018-9435-6