DOI QR코드

DOI QR Code

3D-QSAR Studies of 2-Arylbenzoxazoles as Novel Cholesteryl Ester Transfer Protein Inhibitors

  • Ghasemi, Jahan B. (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology) ;
  • Pirhadi, Somayeh (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology) ;
  • Ayati, Mahnaz (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology)
  • Received : 2010.08.23
  • Accepted : 2010.12.20
  • Published : 2011.02.20

Abstract

The 3D-QSAR study of 2-arylbenzoxazoles as novel cholesteryl ester transfer protein inhibitors was performed by comparative molecular field analysis (CoMFA), CoMFA region focusing (CoMFA-RF) for optimizing the region for the final PLS analysis, and comparative molecular similarity indices analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The best orientation was searched by all-orientation search strategy using AOS, to minimize the effect of the initial orientation of the structures. The predictive ability of CoMFARF and CoMSIA were determined using a test set of twelve compounds giving predictive correlation coefficients of 0.886, and 0.754 respectively indicating good predictive power. Further, the robustness and sensitivity to chance correlation of the models were verified by bootstrapping and progressive scrambling analyses respectively. Based upon the information derived from CoMFA(RF) and CoMSIA, identified some key features that may be used to design new inhibitors for cholesteryl ester transfer protein.

Keywords

References

  1. Wolfe, M. L.; Rader, D. J. Circulation 2004, 110, 1338. https://doi.org/10.1161/01.CIR.0000143047.52724.BB
  2. Barter, P. J.; Brewer, H. B. J.; Chapman, M. J.; Hennekens, C. H.; Rader, D. J.; Tall, A. R. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 160. https://doi.org/10.1161/01.ATV.0000054658.91146.64
  3. Ruggeri, R. B. Cur. Top. Med. Chem. 2005, 5, 257. https://doi.org/10.2174/1568026053544506
  4. Cuchel, M.; Rader, D. J. J. Am. Coll. Cardiol. 2007, 50, 1956. https://doi.org/10.1016/j.jacc.2007.07.059
  5. Parini, P.; Rudel, L. L. I. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 374. https://doi.org/10.1161/01.ATV.0000060447.25136.1C
  6. Huang, Z.; Inazo, A.; Mohara, A.; Higashikata, T.; Mabuchi, H. Clin. Sci. 2002, 103, 587.
  7. De Grooth, G. J.; Kuivenhoven, J. A.; Stalenhoef, A. F.; de Graaf, J.; Zwinderman, A. H.; Posma, J. L.; Van Tol, A.; Kastelein, J. J. Circulation 2002, 105, 2159. https://doi.org/10.1161/01.CIR.0000015857.31889.7B
  8. Boekholdt, S. M.; Kuivenhoven, J. A.; Wareham, N. J.; Peters, R. J. G.; Jukema, J. W.; Luben, R.; Bingham, S. A.; Day, N. E.; Kastelein, J. J. P.; Khaw, K. T. Circulation 2004, 110, 1418. https://doi.org/10.1161/01.CIR.0000141730.65972.95
  9. Cramer, R. D., III.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  10. Klebe, G.; Abraham, U.; Meitzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  11. Harikrishnan, L. S.; Kamau, M. G.; Herpin, T. F.; Morton, G. C.; Liu, Y.; Cooper, C. B.; Salvati, M. E.; Qiao, J. X.; Wang, T. C.; Adam, L. P.; Taylor, D. S.; Chen, A. Y. A.; Yin, X.; Seethala, R.; Peterson, T. L.; Nirschl, D. S.; Miller, A. V.; Weigelt, C. A.; Appiah, K. K.; O’Connell, J. C.; Lawrence, R. M. Bioorg. Med. Chem. Lett. 2008, 18, 2640. https://doi.org/10.1016/j.bmcl.2008.03.030
  12. Wang, R. X.; Gao, Y.; Liu, L.; Lai, L. H. J. Mol. Model. 1998, 4, 276. https://doi.org/10.1007/s008940050085
  13. $QSAR^{TM}$ Manual, SYBYL 7.3, Tripos, St. Louis, MO.USA.
  14. Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, S. Quant. Struct. Act. Relat. 1993, 12, 9. https://doi.org/10.1002/qsar.19930120103
  15. Tropsha, A.; Cho, S. J. J. Med. Chem. 1995, 38, 1060. https://doi.org/10.1021/jm00007a003
  16. Clark, R. D.; Fox, P. C. J. Comput- Aided. Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z
  17. Clark, R. D. J. Comput -Aided. Mol . Des. 2003, 17, 265. https://doi.org/10.1023/A:1025366721142
  18. Baurin, N.; Vangrevelinghe, E.; Allory, L. M. J. Med. Chem. 2000, 43, 1109. https://doi.org/10.1021/jm991124t

Cited by

  1. Docking alignment-3D-QSAR of a new class of potent and non-chiral indole-3-carboxamide-based renin inhibitors vol.76, pp.12, 2011, https://doi.org/10.1135/cccc2011070
  2. Docking and pharmacophore-based alignment comparative molecular field analysis three-dimensional quantitative structure-activity relationship analysis of dihydrofolate reductase inhibitors by linear and nonlinear calibration methods vol.27, pp.10, 2013, https://doi.org/10.1002/cem.2515
  3. Docking, CoMFA and CoMSIA Studies of a Series of N-Benzoylated Phenoxazines and Phenothiazines Derivatives as Antiproliferative Agents vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.899
  4. 3D-QSAR, docking and molecular dynamics for factor Xa inhibitors as anticoagulant agents vol.39, pp.6, 2013, https://doi.org/10.1080/08927022.2012.741235
  5. Docking and receptor-based QSAR approaches for modeling of CETP inhibitors vol.23, pp.3, 2014, https://doi.org/10.1007/s00044-013-0722-1
  6. A QSAR classification study on inhibitory activities of 2-arylbenzoxazoles against cholesteryl ester transfer protein vol.23, pp.4, 2014, https://doi.org/10.1007/s00044-013-0789-8
  7. -Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization vol.60, pp.2, 2017, https://doi.org/10.1021/acs.jmedchem.6b01591
  8. Molecular features related to the binding mode of PPARδ agonists from QSAR and docking analyses vol.24, pp.2, 2011, https://doi.org/10.1080/1062936x.2012.751453