DOI QR코드

DOI QR Code

Effect of the Thickness and the Annealing Conditions of the Catalytic Ni Films on the Graphene Films Grown by a Rapid-Thermal Pulse CVD

Rapid-Thermal Pulse 화학증착법에 의해 증착된 그래핀 박막에서 촉매금속 Ni의 두께 및 열처리 조건의 영향

  • Na, Sin-Hye (Department of Materials Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Graduate of Analytical Science and Technology, Chungnam National University)
  • 나신혜 (충남대학교 재료공학과) ;
  • 윤순길 (충남대학교 분석과학기술학과)
  • Received : 2010.11.02
  • Accepted : 2010.12.15
  • Published : 2011.02.27

Abstract

Mono- and few-layer graphenes were grown on Ni thin films by rapid-thermal pulse chemical vapor deposition technique. In the growth steps, the exposure step for 60 s in $H_2$ (a flow rate of 10 sccm (standard cubic centimeters per minute)) atmosphere after graphene growth was specially established to improve the quality of the graphenes. The graphene films grown by exposure alone without $H_2$ showed an intensity ratio of $I_G/I_{2D}$ = 0.47, compared with a value of 0.38 in the films grown by exposure in H2 ambient. The quality of the graphenes can be improved by exposure for 60 s in $H_2$ ambient after the growth of the graphene films. The physical properties of the graphene films were investigated for the graphene films grown on various Ni film thicknesses and on 260-nm thick Ni films annealed at 500 and $700^{\circ}C$. The graphene films grown on 260-nm thick Ni films at $900^{\circ}C$ showed the lowest $I_G/I_{2D}$ ratio, resulting in the fewest layers. The graphene films grown on Ni films annealed at $700^{\circ}C$ for 2 h showed a decrease of the number of layers. The graphene films were dependent on the thickness and the grain size of the Ni films.

Keywords

References

  1. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6(9), 652 (2007). https://doi.org/10.1038/nmat1967
  2. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, Nat. Mater., 7(2), 151 (2008). https://doi.org/10.1038/nmat2082
  3. T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, Science, 313(5789), 951 (2006). https://doi.org/10.1126/science.1130681
  4. S. H. Song, O. S. Kwon, H. K. Jeong and Y. G. Kang, Kor. J. Mater. Res., 20(2), 104 (2010). https://doi.org/10.3740/MRSK.2010.20.2.104
  5. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  6. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme and I. A. Aksay, Chem. Mater., 19(18), 4396 (2007). https://doi.org/10.1021/cm0630800
  7. J. Wu, W. Pisula and K. Mullen, Chem. Rev., 107, 718 (2007). https://doi.org/10.1021/cr068010r
  8. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Science, 312(5777), 1191 (2006). https://doi.org/10.1126/science.1125925
  9. P. W. Sutter, J. I. Flege and E. A. Sutter, Nat. Mater., 7(5), 406 (2008). https://doi.org/10.1038/nmat2166
  10. Y. Zhang, J. P. Small, W. V. Pontius and P. Kim, Appl. Phys. Lett., 86(7), 073104 (2005). https://doi.org/10.1063/1.1862334
  11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Letters, 9, 30 (2009). https://doi.org/10.1021/nl801827v
  12. A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Nano Letters, 10, 1542 (2010). https://doi.org/10.1021/nl9037714
  13. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, Appl. Phys. Lett., 93(11), 113103 (2008). https://doi.org/10.1063/1.2982585

Cited by

  1. Analysis of Characteristic of Graphene Thin Film Transistor and Properties of Graphene using Copper Substrate vol.17, pp.9, 2013, https://doi.org/10.6109/jkiice.2013.17.9.2127