DOI QR코드

DOI QR Code

Electrochemical Properties of Individual Carbon Nanotube Fabricated by Reactive Ion Etching

반응성 이온 식각법에 의해 제작된 탄소나노튜브 전극의 전기화학적 특성

  • Hwang, Sook-Hyun (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Choi, Hyon-Kwang (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Sang-Hyo (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Han, Young-Moon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 황숙현 (인제대학교 나노시스템공학과, 나노메뉴팩쳐링센터) ;
  • 최현광 (인제대학교 나노시스템공학과, 나노메뉴팩쳐링센터) ;
  • 김상효 (인제대학교 나노시스템공학과, 나노메뉴팩쳐링센터) ;
  • 한영문 (인제대학교 나노시스템공학과, 나노메뉴팩쳐링센터) ;
  • 전민현 (인제대학교 나노시스템공학과, 나노메뉴팩쳐링센터)
  • Received : 2010.12.02
  • Accepted : 2010.12.23
  • Published : 2011.02.27

Abstract

In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a $2{\mu}L$ droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.

Keywords

References

  1. G. A. Urban, Meas. Sci Tech., 20, 012001 (2009). https://doi.org/10.1088/0957-0233/20/1/012001
  2. D. W. M. Arrigan, Analyst, 129, 1157 (2004). https://doi.org/10.1039/b415395m
  3. K. Yum, N. Wang and M. -F. Yu, Nanoscale, 2, 363 (2010). https://doi.org/10.1039/b9nr00231f
  4. S. Hwang, J. Moon, S. Lee, D.-H. Kim, D. Lee, W. Choi and M. Jeon, Electron. Lett., 43, 1455 (2007). https://doi.org/10.1049/el:20072867
  5. E. Ahn, H. Jung, N. L. Hung, D. Oh, H. Kim and D. Kim, Kor. J. Mater. Res, 19(11), 631 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.11.631
  6. S. Roy, H. Vedala and W. Choi, Nanotechnology, 17, S14 (2006). https://doi.org/10.1088/0957-4484/17/4/003
  7. H. Vedala, S. Roy, M. Doud, K. Mathee, S. Hwang, M. Jeon and W. Choi, Nanotechnology, 19(26), 265704 (2008). https://doi.org/10.1088/0957-4484/19/26/265704
  8. J. Zou, S. I. Khondaker, Q. Huo and L. Zhai, Adv. Funct. Mater., 19, 479 (2009). https://doi.org/10.1002/adfm.200800542
  9. A. Wisitsoraat, C. Karuwan, K. Wong-Ek, D. Phokharatkul, P. Sritongkham and A. Tuantranont, Sensors, 9, 8658 (2009). https://doi.org/10.3390/s91108658
  10. C. E. Banks, R. R. Moore, T. J. Davies and R. G. Compton, Chem. Comm., 2004, 1804 (2004).
  11. M. Pacios, M. del Valle, J. Bartroli and M. J. Esplandiu, J. Electroanal. Chem., 619-620, 117 (2008). https://doi.org/10.1016/j.jelechem.2008.03.019
  12. C. E. Banks, T. J. Davies, G. G. Wildgoose and R. G. Compton, Chem. Comm., 2005, 829 (2005).
  13. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Applied Materials & Interfaces, 1(6), 1145 (2009). https://doi.org/10.1021/am800249k
  14. S. Bhattacharya, A. Datta, J. M. Berg and S. Gangopadhyay, IEEE ASME J. Microelectromech. Syst., 14(3), 590 (2005). https://doi.org/10.1109/JMEMS.2005.844746
  15. C. E. Banks and R. G. Compton, Analyst, 131, 15 (2006), https://doi.org/10.1039/b512688f
  16. C. Hu. Y. Zhang, G. Bao, Y. Zhang, M. Liu and Z. L. Wang, Chem. Phys. Lett., 418, 524 (2005).
  17. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., p.1-p.14, John Wiley & Sons, Inc., USA (2001).
  18. H. H. Girault, Analytical and Physical Electrochemistry, p. 304 and 379, EPFL Press, Italy (2004).
  19. H. Zhao, Y. Zhang and Z. Yuan, Analyst, 126, 358 (2001). https://doi.org/10.1039/b008283j