DOI QR코드

DOI QR Code

Prediction of Viscosity in Liquid Epoxy Resin Mixed with Micro/Nano Hybrid Silica

액상 에폭시 수지와 마이크로/나노 하이브리드 실리카 혼합물의 점도 예측

  • Huang, Guang-Chun (Performance Materials Team/R&D Center, KOLON Industries, Inc.) ;
  • Lee, Chung-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 황광춘 (코오롱 인더스트리(주) 기능소재연구팀) ;
  • 이충희 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Received : 2010.11.23
  • Accepted : 2011.01.03
  • Published : 2011.02.27

Abstract

The relative viscosity was measured at different filler loadings for a cycloaliphatic epoxy resin and hexahydro-4-methylphthalic anhydride hardener system filled with micro/nano hybrid silica. Various empirical models were fitted to the experimental data and a fitting parameter such as critical filler fractions (${\phi}_{max}$) was estimated. Among the models, the Zhang-Evans model gave the best fit to the viscosity data. For all the silica loadings used, ln (relative viscosity) varied linearly with filler loadings. Using the Zhang-Evans model and the linearity characteristics of the viscosity change, simple methods to predict the relative viscosity below ${\phi}_{max}$ are presented in this work. The predicted viscosity values from the two methods at hybrid silica fractions of $\phi$ = 0.086 and 0.1506 were confirmed for a micro:nano = 1:1 hybrid filler. As a result, the difference between measured and predicted values was less than 11%, indicating that the proposed predicting methods are in good agreement with the experiment.

Keywords

References

  1. L. E. Nielsen, Mechanical Properties of Polymers and Composites, 2nd ed., p. 377-459, Marcel Dekker, NewYork (1994)
  2. A. Einstein, Ann. Phys., 324, 289 (1906). https://doi.org/10.1002/andp.19063240204
  3. A. Einstein, Ann. Phys., 340, 591 (1911). https://doi.org/10.1002/andp.19113400810
  4. I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959). https://doi.org/10.1122/1.548848
  5. D. Quemada, Rheol. Acta, 16, 82 (1977). https://doi.org/10.1007/BF01516932
  6. H. Eilers, Kolloid-Zeitschrift, 97, 313 (1941). https://doi.org/10.1007/BF01503023
  7. M. Mooney, J. Colloid Sci., 6, 162 (1951). https://doi.org/10.1016/0095-8522(51)90036-0
  8. J. S. Chong, E. B. Christiansen and A. D. Baer, J. Appl. Polymer Sci., 15, 2007 (1971). https://doi.org/10.1002/app.1971.070150818
  9. T. Zhang and J. R. G. Evans, J. Eur. Ceram. Soc., 5, 165 (1989). https://doi.org/10.1016/0955-2219(89)90032-0
  10. Q. B. Guo, M. Z. Rong, G. L. Jia, K. T. Lau and M. Q. Zhang, Wear, 266, 658 (2009). https://doi.org/10.1016/j.wear.2008.08.005
  11. F. H. Su, Z. Z. Zhang, K. Wang, W. Jiang, X. H. Men and W. M. Liu, Compos. Appl. Sci. Manuf., 37, 1351 (2006). https://doi.org/10.1016/j.compositesa.2005.08.017
  12. N. Ilie and R. Hickel, Dent. Mater., 25, 810 (2009). https://doi.org/10.1016/j.dental.2009.02.005
  13. F. Bauer, R. Flyunt, K. Czihal, M. R. Buchmeiser, H. Langguth and R. Mehnert, Macromol, Mater. Eng,, 291, 493 (2006). https://doi.org/10.1002/mame.200600034
  14. K. Sanada, Y. Tada, Y. Shindo, Compos. Appl. Sci. Manuf., 40, 724 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
  15. D. H. Kim, D. Y. Maeng, J. H. Lee and C. W. Won, Kor. J. Mater. Res. 9(3), 315 (1999) (in Korean).
  16. T. Hanemann, Compos. Appl. Sci. Manuf., 37, 2155 (2006). https://doi.org/10.1016/j.compositesa.2005.11.007
  17. T. Hanemann, Compos. Appl. Sci. Manuf., 37, 735 (2006). https://doi.org/10.1016/j.compositesa.2005.06.006
  18. S. Beun, C. Baily, J. Devaux and G. Leloup, Dent. Mater., 24, 548 (2008). https://doi.org/10.1016/j.dental.2007.05.019
  19. Technical Bulletin Fine particles No. 11-Basic Characteristics of $AEROSIL^{(R)}$, p. 55-56, Degussa, Germany, 2006.