DOI QR코드

DOI QR Code

Inorganic nanomaterial-based biocatalysts

  • Lee, Soo-Youn (Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Lee, Ji-Ho (Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Chang, Jeong-Ho (Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Lee, Jin-Hyung (Korea Institute of Ceramic Engineering & Technology (KICET))
  • Received : 2011.01.10
  • Published : 2011.02.28

Abstract

Over the years, nanostructures have been developed to enable to support enzyme usability to obtain highly selective and efficient biocatalysts for catalyzing processes under various conditions. This review summarizes recent developments in the nanostructures for enzyme supporters, typically those formed with various inorganic materials. To improve enzyme attachment, the surface of nanomaterials is properly modified to express specific functional groups. Various materials and nanostructures can be applied to improve both enzyme activity and stability. The merits of the incorporation of enzymes in inorganic nanomaterials and unprecedented opportunities for enhanced enzyme properties are discussed. Finally, the limitations encountered with nanomaterial-based enzyme immobilization are discussed together with the future prospects of such systems.

Keywords

References

  1. Fernandez-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., Guisan, J. M. and Fernandez- Lafuente, R. (2006) Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules 7, 2610-2615. https://doi.org/10.1021/bm060408+
  2. Morana, A., Mangione, A., Maurelli, L., Fiume, I., Paris, O., Cannio, R. and Rossi, M. (2006) Immobilization and characterization of a thermostable beta-xylosidase to generate a reusable biocatalyst. Enzyme. Microb. Technol. 39, 1205-1213. https://doi.org/10.1016/j.enzmictec.2006.03.010
  3. Tardioli, P. W., Zanin, G. M. and de Moraes, F. F. (2006) Characterization of Thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme. Microb. Technol. 39, 1270-1278. https://doi.org/10.1016/j.enzmictec.2006.03.011
  4. Love. J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. and Whitesides, G. M. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103-1169. https://doi.org/10.1021/cr0300789
  5. Morf, P., Raimondi, F., Nothofer, H. -G., Schnyder, B., Yasuda, A., Wessels, J. M. and Jung, T. A. (2006) Dithioccarbamates: functional and versatitle linkers for the formation of self-assembled monolayers. Langmuir 22, 658-663. https://doi.org/10.1021/la052952u
  6. Laszlo, J. A. and Evans, K. O. (2007) Influence of self-assembled monolayer surface chemistry on Candida Antarctica lipase B adsorption and specific activity. J. Mol. Catal. B: Enzym. 48, 84-89. https://doi.org/10.1016/j.molcatb.2007.06.010
  7. Mazur, M., Krysinski, P., Michota-Kaminska, A. Bukowska, J., Rogalski, J. and Blanchard, G. J. (2007) Immobilization of laccase on gold, silver and indium tin oxide by zirconium-phosphonate-carboxylate (ZPC) coordination chemistry. Bioelectrochemistry 71, 15-22. https://doi.org/10.1016/j.bioelechem.2006.12.006
  8. Reis, P., Holmberg, K., Debeche, T., Folmer, B., Fauconnot, L. and Watzke, H. (2006) Lipase-Catalyzed Reactions at Different Surfaces. Langmuir 22, 8169-8177. https://doi.org/10.1021/la060913s
  9. Rusmini, F., Zhong, Z. and Feijen, J. (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8, 1775-1789. https://doi.org/10.1021/bm061197b
  10. Villalonga, R., Cao, R. and Fragoso, A. (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088-3116. https://doi.org/10.1021/cr050253g
  11. Wu, C. -S., Wu, C. -T., Yang, Y. -S. and Ko, F. -H. (2008) An enzymatic kinetics investigation into the significantly enhanced activity of functionalized gold nanoparticles. Chem. Commun. 42, 5327-5329.
  12. Szamocki, R., Velichko, A., Mucklich, F., Reculusa, S., Ravaine, S., Neugebauer, S., Schuhmann, W., Hempelmann, R. and Kuhn, A. (2007) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem. Commun. 9, 2121-2127. https://doi.org/10.1016/j.elecom.2007.06.008
  13. Qiu, H., Li, Y., Ji, G., Zhou, G., Huang, X., Qu, Y. and Gao, P. (2009) Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of $H_2O_2$ by co-immobilized glucose oxidase. Bioresour. Technol. 100, 3837-3842. https://doi.org/10.1016/j.biortech.2009.03.016
  14. Chico, B., Camacho, C., Perez, M., Longo, M., Sanroman, M. A., Pingarron, J. M. and Villalonga, R. (2009) Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. J. Electroanal. Chem. 629, 126-132. https://doi.org/10.1016/j.jelechem.2009.02.004
  15. Zhang, Y., Zhang, Y., Wang, H., Yan, B., Shen, G. and Yu, R. (2009) An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem. 627, 9-14. https://doi.org/10.1016/j.jelechem.2008.12.010
  16. Chen, J., Du, D., Yan, F., Ju, H. X. and Lian, H. Z. (2005) Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem. Eur. J. 11, 1467-1472. https://doi.org/10.1002/chem.200400956
  17. Zhang, M., Smith, A. and Gorski, W. (2004) Coimmobilization of dehydrogenase and their cofactors in electrochemical biosensors. Anal. Chem. 76, 5045-5050. https://doi.org/10.1021/ac049519u
  18. Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., Mearns, F. J., Shapter, J. G. and Hibbert, D. B. (2003) Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006-9007. https://doi.org/10.1021/ja035722f
  19. Jia, H., Zhu, G. and Wang, P. (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng. 84, 406-414. https://doi.org/10.1002/bit.10781
  20. Sarah, H., Jakki, C. and Edmond, M. (2008) Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 47, 8582-8594. https://doi.org/10.1002/anie.200705238
  21. Wang, L., Wei, L., Chen, Y. and Jiang, R. (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J. Biotechnol. 150, 57-63.
  22. Lee, J. Y., Shin, H. Y., Kang, S. W., Park, C. and Kim, S. W. (2010) Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes. Biosens. Bioelectron. doi: 10.1016/j.bios.2010.07.020.
  23. Wang, S. G., Zhang, Q., Wang, R., Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q. and Zhou, Q. (2003) Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5, 800-803. https://doi.org/10.1016/j.elecom.2003.07.007
  24. Lee, K., Komathi, S., Nam, N. J. and Gopalan, A. L. (2010) Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem. J. 95, 74-79. https://doi.org/10.1016/j.microc.2009.10.008
  25. Ebrahimi, B., Shojaosadati, S. A., Ranaie, S. O. and Mousavi, S. M. (2010) Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology. Process. Biochem. 45, 81-87. https://doi.org/10.1016/j.procbio.2009.08.007
  26. Lee, D., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. and Lee, C. (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J. Mol. Catal. B: Enzym. 57, 62-66. https://doi.org/10.1016/j.molcatb.2008.06.017
  27. Bayramoglu, G., Kiralp, S., Yilmaz, M., Toppare, L. and Arica, M. Y. (2008) Covalent immobilization of chloroperoxidase onto magnetic beads: catalytic properties and stability. Biochem. Eng. J. 38, 180-188. https://doi.org/10.1016/j.bej.2007.06.018
  28. Zeng, L., Luo, K. and Gong, Y. (2006) Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B: Enzym. 38, 24-30. https://doi.org/10.1016/j.molcatb.2005.10.007
  29. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710-712. https://doi.org/10.1038/359710a0
  30. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H. and Sheppard, E. W. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834-10843. https://doi.org/10.1021/ja00053a020
  31. Kim, J., Grate, J. W. and Wang, P. (2006) Nanostructures for Enzyme Stabilization. Chem. Eng. Sci. 61, 1017-1026. https://doi.org/10.1016/j.ces.2005.05.067
  32. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548-552. https://doi.org/10.1126/science.279.5350.548
  33. Schmidt-Winkel, P., Lukens, W. W., Zhao, D. Y., Yang, P. D., Chmelka, B. F. and Stucky, G. D. (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121, 254-255. https://doi.org/10.1021/ja983218i
  34. Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F. and Ono, M. (2008) Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B 135, 268-275. https://doi.org/10.1016/j.snb.2008.08.025
  35. Santalla, E., Serra, E., Mayoral, A., Losada, J., Blanco, R. M. and Diaza, I. (2010) In-situ immobilization of enzymes in mesoporous silicas. Solid. State. Sci. doi:10.1016/j.solidstatesciences.2010.09.015.
  36. Maria Chong, A. S. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404. https://doi.org/10.1016/j.apsusc.2004.06.080
  37. Zhao, J., Wang, Y., Luo, G. and Zhu, S. (2010) Covalent immobilization of penicillin G acylase on aminopropylfunctionalized mesostructured cellular foams. Bioresour. Technol. 101, 7211-7217. https://doi.org/10.1016/j.biortech.2010.04.067
  38. Lie, J., Fan, J., Yu, C., Zhang, L., Jiang, S., Tu, B. and Zhao, D. (2004) Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121-128. https://doi.org/10.1016/j.micromeso.2004.05.004
  39. Serra, E., Mayoral, A., Sakamotob, Y., Blancoa, R. M. and Diaz, I. (2008) Immobilization of lipase in ordered mesoporous materials: effect of textural and structural parameters. Micropor. Mesopor. Mater. 114, 201-213. https://doi.org/10.1016/j.micromeso.2008.01.005
  40. Chouyyok, W., Panpranot, J., Thanachayanant, C. and Prichanont, S. (2009) Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B: Enzym. 56, 246-252. https://doi.org/10.1016/j.molcatb.2008.05.009
  41. Lee, J., Na, H. B., Kim, B. C., Lee, J. H., Lee, B., Kwak, J. H., Hwang, Y., Park, J., Gu, M. G., Kim, J., Joo, J., Shin, C., Grate, J. W., Hyeon, T. and Kim, J. (2009) Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite- coated mesoporous silica. J. Mater. Chem. 19, 7864-7870. https://doi.org/10.1039/b909109b
  42. Lee, S. Y., Lee, S., Lee, J. H. and Chang, J. H. (Submitted) Enzyme-magnetic nanoparticle conjugates as rigid biocatalyst for the elimination of toxic aromatic hydrocarbon. Angew. Chem. Int. Ed. (in press).
  43. Qiu, H., Lu, L., Huang, X., Zhang, Z. and Qu, Y. (2010) Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresour. Technol. 101, 9415-9420. https://doi.org/10.1016/j.biortech.2010.07.097
  44. Oliveira, G. B., Filho, J. L. L., Chaves, M. E. C., Azevedo, W. M. and Carvalho Jr., L. B. (2008) Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites. React. Func. Poly. 68, 27-32. https://doi.org/10.1016/j.reactfunctpolym.2007.10.009
  45. Ogata, K., Dobashi, H., Koike, K., Sasa, S., Inoue, M. and Yano, M. (2010) Patterned growth of ZnO nanorods and enzyme immobilization toward the fabrication of glucose sensors. Physica E 42, 2880-2883. https://doi.org/10.1016/j.physe.2010.04.011
  46. Gekas, V. C. (1986) Artificial membranes as carriers for the immobilization of biocatalysts. Enzyme. Microb. Technol. 8, 450-460. https://doi.org/10.1016/0141-0229(86)90046-3
  47. Prakasham, R. S., Likhar, P. R., Rajyalaxmi, K., Rao, C. S. and Sreedhar, B. (2008) Octadecanoic acid/silica particles synthesis for enzyme immobilization: characterization and evaluation of biocatalytic activity. J. Mol. Catal. B: Enzym. 55, 43-48. https://doi.org/10.1016/j.molcatb.2008.01.008
  48. Burkett, S. L., Sims, S. D. and Mann, S. (1996) Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 11, 1367-1368.
  49. Macquarrie, D. J. (1996) Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem. Commun. 16, 1961-1962.
  50. Na, W., Wei, Q., Lan, J., Nie, Z., Sun, H. and Li, Q. (2010) Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Micropor. Mesopor. Mater. 134, 72-78. https://doi.org/10.1016/j.micromeso.2010.05.009
  51. Lee, J., Kim, J., Jia, H., Kim, M., Kim, J., Kwak, J. H., Jin, S., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W. and Hyeon, T. (2005) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1, 744-753. https://doi.org/10.1002/smll.200500035
  52. Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G. and Chang, H. N. (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210-218. https://doi.org/10.1002/bit.21107
  53. Kim, J., Park, J. and Kim, H. (2004) Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloids. Surf. A 241, 113-117. https://doi.org/10.1016/j.colsurfa.2004.04.048
  54. Kim, M. I., Kim, J., Lee, J., Shin, S., Na, H. B., Hyeon, T., Park, H. G. and Chang, H. N. (2008) One-dimensional crosslinked enzyme aggregateds in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Micropor. Mesopor. Mater. 111, 18-23. https://doi.org/10.1016/j.micromeso.2007.07.009
  55. Wang, P., Dai, S., Waezsada, S. D., Tsao, A. Y. and Davison, B. H. (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol. Bioeng. 74, 249-255. https://doi.org/10.1002/bit.1114
  56. Konwarh, R., Kalita, D., Mahanta, C., Mandal, M. and Karak, N. (2010) Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted "green" nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl. Microbiol. Biotechnol. doi 10.1007/s00253-010-2658-4.
  57. Cseslik, C. and Winter, R. (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys. Chem. Chem. Phys. 3, 235-239. https://doi.org/10.1039/b005900p
  58. Turner, N. J. (2003) Controlling chirality. Curr. Opin. Biotechnol. 14, 401-406. https://doi.org/10.1016/S0958-1669(03)00093-4
  59. Vertegel, A. A., Siegel, R. W. and Dordick, J. S. (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20, 6800-6807. https://doi.org/10.1021/la0497200
  60. Shang, W., Nuffer, J. H., Dordick, J. S. and Siegel, R. W. (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett. 7, 1991-1995. https://doi.org/10.1021/nl070777r
  61. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. and Fernandez-Laruente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme. Microb. Technol. 40, 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  62. Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C. and Liu, H. (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J. Mol. Catal. B: Enzym. 58, 103-109.
  63. Huang, J., Liu, Y. and Wang, X. (2009) Silanized palygorskite for lipase immobilization. J. Mol. Catal. B: Enzym. 57, 10-15. https://doi.org/10.1016/j.molcatb.2008.06.009
  64. Kim, J., Jia, H., Lee, C., Chung, S., Kwak, J. H., Shin, Y., Dohnalkova, A., Kim, B. -G., Wang, P. and Grate, J. W. (2006) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme. Microb. Technol. 39, 474-480. https://doi.org/10.1016/j.enzmictec.2005.11.042
  65. Kachoosangi, R. T., Musameh, M. M., Abu-Yousef, I., Yousef, J. M., Kanan, S. M., Xiao, L., Davies, S. G., Russell, A. and Compton, R. G. (2009) Carbon nanotube-Ionic liquid composite sensors and biosensors. Anal. Chem. 81, 435-442. https://doi.org/10.1021/ac801853r
  66. Rantwijk, F., Secundo, F. and Sheldon, R. A. (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 8, 282-286. https://doi.org/10.1039/b513062j
  67. Dastjerdi, R. and Montazer, M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029
  68. Libertino, S., Fichera, M., Aiello, V., Statello, G., Fiorenza, P. and Sinatra, F. (2007) Experimental characterization of proteins immobilized on Si-based materials. Microelecron. Eng. 84, 468-473. https://doi.org/10.1016/j.mee.2006.10.064
  69. Crespilho, F. N., Ghica, M. E., Florescu, M., Nart, F. C., Oliveira Jr, O. N. and Brett, C. M. A. (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 8, 1665-1670. https://doi.org/10.1016/j.elecom.2006.07.032
  70. Delvaux, M. and Demoustier-Champagne, S. (2003) Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943-951. https://doi.org/10.1016/S0956-5663(02)00209-9
  71. Knopp, D., Tang, D. and Niessner, R. (2009) Bioanalytical applications of biomolecule-functionalized nanometersized doped silica particles. Anal. Chim. Acta. 647, 14-30. https://doi.org/10.1016/j.aca.2009.05.037
  72. Ren, X., Chen, D., Meng, X., Tang, F., Du, A. and Zhang, L. (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilized matrix. Colloids Surf. B 72, 188-192. https://doi.org/10.1016/j.colsurfb.2009.04.003
  73. Bentancor, L. and Luckarift, H. R. (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 26, 566-572. https://doi.org/10.1016/j.tibtech.2008.06.009
  74. Lei, C., Shin, Y., Liu, J. and Ackerman, E. J. (2002) Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124, 11242-11243. https://doi.org/10.1021/ja026855o
  75. Dwevedi, A., Singh, A. K., Singh, D. P., Srivastava, O. N. and Kayastha, A. M. (2009) Lactose nano-probe optimized using response surface methodology. Biosens. Bioelectron. 25, 784-790. https://doi.org/10.1016/j.bios.2009.08.029
  76. Bai, Y. -X., Li, Y. -F., Yang, Y. and Yi, L. -X. (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale $SiO_2$ spheres. Process Biochem. 41, 770-777. https://doi.org/10.1016/j.procbio.2005.09.012
  77. Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H. and Liu, J. (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal. Commun. 12, 259-263. https://doi.org/10.1016/j.catcom.2010.09.030
  78. Benjamin, S. and Pandey, A. (1998) Candida rugosa lipase: molecular biology and versatility in biotechnology. Yeast 14, 1069-1087. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K
  79. Yusdy, P. S. R., Yap, M. G. S. and Wang, D. I. C. (2009) Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem. Eng. J. 48, 13-21. https://doi.org/10.1016/j.bej.2009.07.017
  80. Chong, A. S. M. and Zhao, X. S. (2004) Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398-404. https://doi.org/10.1016/j.apsusc.2004.06.080
  81. Xiao, Q. -G., Tao, X., Zhang, J. -P. and Chen, J. -F. (2006) Hollow silica nanotubes for immobilization of penicillin G acylase enzyme. J. Mol. Catal .B: Enzym. 42, 14-19. https://doi.org/10.1016/j.molcatb.2006.05.011
  82. Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R. and Stewart Jr, C. N. (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13, 421-429. https://doi.org/10.1016/j.tplants.2008.06.001
  83. Huang, J., Liu, C., Xiao, H., Wang, J., Jiang, D. and Gu, E. (2007) Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int. J. Nanomedicine 2, 775-784.
  84. Bugg, T. D. H., Ahmad, M., Hardiman, E. M. and Singh, R. (2010) The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 1-7. https://doi.org/10.1016/j.ceb.2010.01.003

Cited by

  1. Molecular Orientation of Enzymes Attached to Surfaces through Defined Chemical Linkages at the Solid–Liquid Interface vol.135, pp.34, 2013, https://doi.org/10.1021/ja403672s
  2. Molecular-Level Insights into Orientation-Dependent Changes in the Thermal Stability of Enzymes Covalently Immobilized on Surfaces vol.31, pp.22, 2015, https://doi.org/10.1021/acs.langmuir.5b01735
  3. Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation vol.122, 2015, https://doi.org/10.1016/j.molcatb.2015.07.014
  4. Preparation of Polyphosphazene Hydrogels for Enzyme Immobilization vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19079850
  5. Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into chitosan bead vol.81, 2012, https://doi.org/10.1016/j.molcatb.2012.05.004
  6. Amino acid side chain-like surface modification on magnetic nanoparticles for highly efficient separation of mixed proteins vol.93, 2012, https://doi.org/10.1016/j.talanta.2012.02.003
  7. Enzymes immobilized in mesoporous silica: A physical–chemical perspective vol.205, 2014, https://doi.org/10.1016/j.cis.2013.08.010
  8. Surface Modification of Halloysite Nanotubes with Dopamine for Enzyme Immobilization vol.5, pp.21, 2013, https://doi.org/10.1021/am4022973
  9. Enzyme–magnetic nanoparticle conjugates as a rigid biocatalyst for the elimination of toxic aromatic hydrocarbons vol.47, pp.36, 2011, https://doi.org/10.1039/c1cc11664a
  10. Functionalized Graphene Oxide in Enzyme Engineering: A Selective Modulator for Enzyme Activity and Thermostability vol.6, pp.6, 2012, https://doi.org/10.1021/nn300217z
  11. Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil vol.21, pp.1, 2014, https://doi.org/10.1007/s10570-013-0148-4
  12. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein vol.3, pp.38, 2015, https://doi.org/10.1039/C5TB01056J
  13. Highly ordered magnetic mesoporous silicas for effective elimination of carbon monoxide vol.188, 2012, https://doi.org/10.1016/j.jssc.2012.01.050
  14. QCM-D as a method for monitoring enzyme immobilization in mesoporous silica particles vol.176, 2013, https://doi.org/10.1016/j.micromeso.2013.04.001
  15. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-279
  16. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk vol.81, pp.12, 2018, https://doi.org/10.4315/0362-028X.JFP-18-040
  17. Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production pp.1520-5703, 2019, https://doi.org/10.1080/01614940.2018.1479503