DOI QR코드

DOI QR Code

Polymer materials for enzyme immobilization and their application in bioreactors

  • Fang, Yan (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University) ;
  • Huang, Xiao-Jun (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University) ;
  • Chen, Peng-Cheng (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University) ;
  • Xu, Zhi-Kang (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University)
  • Received : 2011.01.30
  • Published : 2011.02.28

Abstract

Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.

Keywords

References

  1. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M. and Witholt, B. (2001) Industrial biocatalysis today and tomorrow. Nature 409, 258-268. https://doi.org/10.1038/35051736
  2. Duran, N. and Esposito, E. (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. Catal. B-Environ. 28, 83-99. https://doi.org/10.1016/S0926-3373(00)00168-5
  3. Vankelecom, I. F. J. (2002) Polymeric membranes in catalytic reactors. Chem. Rev. 102, 3779-3810. https://doi.org/10.1021/cr0103468
  4. Iyer, P. V. and Ananthanarayan, L. (2008) Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43, 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
  5. Brady, D. and Jordaan, J. (2009) Advances in enzyme immobilization. Biotechnol. Lett. 31, 1639-1650. https://doi.org/10.1007/s10529-009-0076-4
  6. Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F. and Kumar, H. (2006) Microbial production, immobilization and applications of $\beta$-D-galactosidase. J. Chem. Technol. Biotechnol. 81, 530-543. https://doi.org/10.1002/jctb.1453
  7. Lu, J. and Toy, P. H. (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem. Rev. 109, 815-838. https://doi.org/10.1021/cr8004444
  8. Juang, R. S., Wu, F. C. and Tseng, R. L. (2002) Use of chemically modified chitosan beads for sorption and enzyme immobilization. Adv. Environ. Res. 6, 171-177. https://doi.org/10.1016/S1093-0191(00)00078-2
  9. Zhang, Y. Q. (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 20, 91-100. https://doi.org/10.1016/S0734-9750(02)00003-4
  10. Sheldon, R. A. (2007) Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289-1307. https://doi.org/10.1002/adsc.200700082
  11. Foresti, M. L. and Ferreira, M. L. (2004). Ethanol pretreatment effect and particle diameter issues on the adsorption of Candida rugosa lipase onto polypropylene powder. Appl. Surf. Sci. 238, 86-90. https://doi.org/10.1016/j.apsusc.2004.05.195
  12. Foresti, M. L. and Ferreira, M. L. (2007) Analysis of the interaction of lipases with polypropylene of different structure and polypropylene-modified glass surface. Colloids Surf. A: Physicochem. Eng. Aspects 294, 147-155. https://doi.org/10.1016/j.colsurfa.2006.08.009
  13. Chen, B., Miller, E. M., Miller, L., Maikner, J. J. and Gross, R. A. (2007) Effects of macroporous resin size on candida antarctica lipase b adsorption, fraction of active molecules, and catalytic activity for polyester synthesis. Langmuir 23, 1381-1387. https://doi.org/10.1021/la062258u
  14. Chen, B., Miller, M. E. and Gross, R. A. (2007) Effects of porous polystyrene resin parameters on candida antarctica lipase b adsorption, distribution, and polyester synthesis activity. Langmuir 23, 6467-6474. https://doi.org/10.1021/la063515y
  15. Katchalski-Katzir, E. and Kraemer, D. M. (2000) $Eupergit^{\circledR}$ C, a carrier for immobilization of enzymes of industrial potential. J. Mol. Catal. B: Enzym. 10, 157-176. https://doi.org/10.1016/S1381-1177(00)00124-7
  16. Kirk, O. and Christensen, M. W. (2002) Lipases from candida antarctica: unique biocatalysts from a unique origin. Org. Process Res. Dev. 6, 446-451. https://doi.org/10.1021/op0200165
  17. Ozturk, N., Akgol, S., Arisoy, M. and Denizli, A. (2007) Reversible adsorption of lipase on novel hydrophobic nanospheres. Sep. Purif. Technol. 58, 83-90. https://doi.org/10.1016/j.seppur.2007.07.037
  18. Uygun, D. A., Corman, M. E., Ozturk, N., Akgol, S. and Denizli, A. (2010) Poly(hydroxyethyl methacrylate-co-methacryloylamidotryptophane) nanospheres and their utilization as affinity adsorbents for porcine pancreas lipase adsorption. Mater. Sci. Eng. C 30, 1285-1290. https://doi.org/10.1016/j.msec.2010.07.012
  19. Knezevic, Z., Milosavic, N., Bezbradica, D., Jakovljevic, Z. and Prodanovic, R. (2006) Immobilization of lipase from Candida rugosa on $Eupergit^{\circledR}$ C supports by covalent attachment. Biochem. Eng. J. 30, 269-278. https://doi.org/10.1016/j.bej.2006.05.009
  20. Miletic, N., Vukovic, Z., Nastasovic, A. and Loos, K. (2009) Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-Versatile immobilization supports for biocatalysts. J. Mol. Catal. B: Enzym. 56, 196-201. https://doi.org/10.1016/j.molcatb.2008.04.012
  21. Miletic, N., Rohandi, R., Vukovic, Z., Nastasovic, A. and Loos, K. (2009) Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycoldimethacrylate) resins for improved Candida antarctica lipase B immobilization. React. Funct. Polym. 69, 68-75. https://doi.org/10.1016/j.reactfunctpolym.2008.11.001
  22. Yi, S. S., Noh, J. M. and Lee, Y. S. (2009) Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa. J. Mol. Catal. B: Enzym. 57, 123-129. https://doi.org/10.1016/j.molcatb.2008.08.002
  23. Fadnavis, N. W., Sheelu, G., Kumar, B. M., Bhalerao, M. U. and Deshpande, A. A. (2003) Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnol. Prog. 19, 557-564. https://doi.org/10.1021/bp010172f
  24. Tutar, H., Yilmaz, E., Pehlivan, E. and Yilmaz, M. (2009) Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. Int. J. Biol. Macromol. 45, 315-320. https://doi.org/10.1016/j.ijbiomac.2009.06.014
  25. Bayramoglu, G., Kacar, Y., Denizli, A. and Arica, M. Y. (2002) Covalent immobilization of lipase onto hydrophobic group incorporated poly(2-hydroxyethyl methacrylate) based hydrophilic membrane matrix. J. Food Eng. 52, 367-374. https://doi.org/10.1016/S0260-8774(01)00128-5
  26. Ye, P., Xu, Z. K., Wang, Z. G., Wu, J., Deng, H. T. and Seta, P. (2005) Comparison of hydrolytic activities in aqueous and organic media for lipases immobilized on poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membrane. J. Mol. Catal. B: Enzym. 32, 115-121. https://doi.org/10.1016/j.molcatb.2004.11.005
  27. Gupta, S., Yogesh, Javiya, S., Bhambi, M., Pundir, C. S., Singh, K. and Bhattacharya, A. (2008) Comparative study of performances of lipase immobilized asymmetric polysulfone and polyether sulfone membranes in olive oil hydrolysis. Int. J. Biol. Macromol. 42, 145-151. https://doi.org/10.1016/j.ijbiomac.2007.10.018
  28. Abrol, K., Qazi, G. N. and Ghosh, A. K. (2007) Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Microbiol. 128, 838-848.
  29. Deng, H. T., Xu, Z. K., Liu, Z. M., Wu, J. and Ye, P. (2004) Adsorption immobilization of Candida rugosa lipases on polypropylene hollow fiber microfiltration membranes modified by hydrophobic polypeptides. Enzyme Microb. Technol. 35, 437-443. https://doi.org/10.1016/j.enzmictec.2004.07.001
  30. Deng, H. T., Xu, Z. K., Wu, J., Ye, P., Liu, Z. M. and Seta, P. (2004) A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. J. Mol. Catal. B: Enzym. 28, 95-100. https://doi.org/10.1016/j.molcatb.2004.01.004
  31. Deng, H. T., Wang, J. J., Liu, Z. Y. and Ma, M. (2010) Influence of varying surface hydrophobicity of chitosan membranes on the adsorption and activity of lipase. J. Appl. Polym. Sci. 115, 1168-1175. https://doi.org/10.1002/app.31207
  32. Deng, H. T., Xu, Z. K., Huang, X. J., Wu, J. and Seta, P. (2004) Adsorption and activity of candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers. Langmuir 20, 10168-10173. https://doi.org/10.1021/la0484624
  33. Ye, P., Jiang, J. and Xu, Z. K. (2007) Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloids Surf. B 60, 62-67. https://doi.org/10.1016/j.colsurfb.2007.05.022
  34. Xu, J., Wang, Y., Hu, Y., Luo, G. and Dai, Y. (2006) Immobilization of lipase by filtration into a specially designed microstructure in the CA/PTFE composite membrane. J. Mol. Catal. B: Enzym. 42, 55-63. https://doi.org/10.1016/j.molcatb.2006.06.007
  35. Hilal, N., Kochkodan, V., Nigmatullin, R., Goncharuk, V. and Al-Khatib, L. (2006) Lipase-immobilized biocatalytic membranes for enzymatic esterification: comparison of various approaches to membrane preparation. J. Membr. Sci. 268, 198-207. https://doi.org/10.1016/j.memsci.2005.06.039
  36. Liu, C. H. and Chang, J. S. (2008) Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20. Bioresour. Technol. 99, 1616-1622. https://doi.org/10.1016/j.biortech.2007.04.011
  37. Orrego, C. E., Salgado, N., Valencia, J. S., Giraldo, G. I., Giraldo, O. H. and Cardona, C. A. (2010) Novel chitosan membranes as support for lipases immobilization: characterization aspects. Carbohydr. Polym. 79, 9-16. https://doi.org/10.1016/j.carbpol.2009.06.015
  38. Pundir, C. S., Bhambi, M. and Chauhan, N. S. (2009) Chemical activation of egg shell membrane for covalent immobilization of enzymes and its evaluation as inert support in urinary oxalate determination. Talanta 77, 1688-1693. https://doi.org/10.1016/j.talanta.2008.10.004
  39. Jia, H., Zhu, G., Vugrinovich, B., Kataphinan, W., Reneker, D. H. and Wang, P. (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog. 18, 1027-1032. https://doi.org/10.1021/bp020042m
  40. Nair, S., Kim, J., Crawford, B. and Kim, S. H. (2007) Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8, 1266-1270. https://doi.org/10.1021/bm061004k
  41. Lee, K. H., Ki, C. S., Baek, D. H., Kang, G. D., Ihm, D. W. and Park,Y. H. (2005) Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fiber. Polym. 6, 181-185. https://doi.org/10.1007/BF02875641
  42. Xie, J. and Hsieh, Y. L. (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J. Mater. Sci. 38, 2125-2133. https://doi.org/10.1023/A:1023763727747
  43. Ye, P., Xu, Z. K., Wu, J., Innocent, C. and Seta, P. (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules 39, 1041-1045. https://doi.org/10.1021/ma0517998
  44. Huang, X. J., Yu, A. G. and Xu, Z. K. (2008) Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour. Technol. 99, 5459-5465. https://doi.org/10.1016/j.biortech.2007.11.009
  45. Li, S. F., Chen, J. P. and Wu, W. T. (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J. Mol. Catal. B: Enzym. 47,117-124. https://doi.org/10.1016/j.molcatb.2007.04.010
  46. Lee, G., Joo, H. and Lee, J. (2008) The use of polyaniline nanofibre as a support for lipase mediated reaction. J. Mol. Catal. B: Enzym. 54, 116-121. https://doi.org/10.1016/j.molcatb.2007.11.020
  47. Lee, G., Kim, J. and Lee, J. (2008) Development of magnetically separable polyaniline nanofibers for enzyme immobilization and recovery. Enzyme. Microb.Technol. 42, 466-472. https://doi.org/10.1016/j.enzmictec.2007.12.006
  48. De Maio, A., El-Masry, M. M., De Luca, P., Grano, V., Rossi, S., Pagliuca, N., Gaeta, F. S., Portaccio, M. and Mita, D. G. (2003) Influence of the spacer length on the activity of enzymes immobilised on nylon/polyGMA membranes Part 2: Non-isothermal conditions. J. Mol. Catal. B: Enzym. 21, 253-265. https://doi.org/10.1016/S1381-1177(02)00230-8
  49. Tamaki, T., Ito, T. and Yamaguchi, T. (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. J. Phys. Chem. B 111, 10312-10319. https://doi.org/10.1021/jp074334n
  50. Wang, Y. and Hsieh, Y. L. (2004) Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. J. Polym. Sci. Part A: Polym. Chem. 42, 4289-4299. https://doi.org/10.1002/pola.20271
  51. Ye, P., Xu, Z. K., Wu, J., Innocent, C. and Seta, P. (2006) Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 27, 4169-4176. https://doi.org/10.1016/j.biomaterials.2006.03.027
  52. Huang, X. J., Yu, A. G., Jiang, J., Pan, C., Qian, J. W. and Xu, Z. K. (2009) Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization. J. Mol. Catal. B: Enzym. 57, 250-256. https://doi.org/10.1016/j.molcatb.2008.09.014
  53. Huang, X. J., Xu, Z. K., Wan, L. S., Innocent, C. and Seta, P. (2006) Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol. Rapid Commun. 27, 1341-1345. https://doi.org/10.1002/marc.200600266
  54. Wang, Z. G., Wang, J. Q. and Xu, Z. K. (2006) Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J. Mol. Catal. B: Enzym. 42, 45-51. https://doi.org/10.1016/j.molcatb.2006.06.004
  55. Lu, P. and Hsieh,Y. L. (2010) Layer-by-layer self-assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane. J. Membr. Sci. 348, 21-27. https://doi.org/10.1016/j.memsci.2009.10.037
  56. Lu, P. and Hsieh,Y. L. (2009) Lipase bound cellulose nanofibrous membrane via Cibacron Blue F3GA affinity ligand. J. Membr. Sci. 330, 288-296. https://doi.org/10.1016/j.memsci.2008.12.064
  57. Huang, X. J., Ge, D. and Xu, Z. K. (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur. Polym. J. 43, 3710-3718. https://doi.org/10.1016/j.eurpolymj.2007.06.010
  58. Yang, G., Wu, J., Xu, G. and Yang, L. (2009) Enantioselective resolution of 2-(1-hydroxy-3-butenyl)-5-methylfuran by immobilized lipase. Appl. Microbiol. Biotechnol. 81, 847-853. https://doi.org/10.1007/s00253-008-1713-x
  59. Yang, G., Wu, J., Xu, G. and Yang, L. (2009) Improvement of catalytic properties of lipase from Arthrobacter sp. by encapsulation in hydrophobic sol-gel materials. Bioresour. Technol. 100, 4311-4316. https://doi.org/10.1016/j.biortech.2009.03.069
  60. Sahin, O., Erdemir, S., Uyanik, A. and Yilmaz, M. (2009) Enantioselective hydrolysis of (R/S)-Naproxen methyl ester with sol-gel encapculated lipase in presence of calix(n) arene derivatives. Appl. Catal. A: Gen. 369, 36-41. https://doi.org/10.1016/j.apcata.2009.08.030
  61. Yilmaz, E., Sezgin, M. and Yilmaz, M. (2010) Enantioselective hydrolysis of rasemic naproxen methyl ester with sol-gel encapsulated lipase in the presence of sporopollenin. J. Mol. Catal. B: Enzym. 62, 162-168. https://doi.org/10.1016/j.molcatb.2009.10.003
  62. Betigeri, S. S. and Neau, S. H. (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23, 3627-3636. https://doi.org/10.1016/S0142-9612(02)00095-9
  63. Alsarra, I. A., Neau, S. H. and Howard, M. A. (2004) Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase. Biomaterials 25, 2645-2655. https://doi.org/10.1016/j.biomaterials.2003.09.051
  64. Jegannathan, K. R., Chan, E. S. and Ravindra, P. (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in $\kappa$-carrageenan. J. Mol. Catal. B: Enzym. 58, 78-83. https://doi.org/10.1016/j.molcatb.2008.11.009
  65. Sawada, S. and Akiyoshi, K. (2010) Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization. Macromol. Biosci. 10, 353-358. https://doi.org/10.1002/mabi.200900304
  66. Monier, M., Wei, Y. and Sarhan, A. A. (2010) Evaluation of the potential of polymeric carriers based on photo-crosslinkable chitosan in the formulation of lipase from Candida rugosa immobilization. J. Mol. Catal. B: Enzym. 63, 93-101. https://doi.org/10.1016/j.molcatb.2009.12.015
  67. Sakai, S., Yamaguchi, T., Watanabe, R., Kawabe, M. and Kawakami, K. (2010) Enhanced catalytic activity of lipase in situ encapsulated in electrospun polystyrene fibers by subsequent water supply. Catal. Commun. 11, 576-580. https://doi.org/10.1016/j.catcom.2009.12.023
  68. Sakaki, K., Giorno, L. and Drioli, E. (2001) Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membr. Sci. 184, 27-38. https://doi.org/10.1016/S0376-7388(00)00600-1
  69. Zhang, L., Liang, S., Hellgren, L. I., Jonsson, G. E. and Xu, X. (2008) Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production. J. Membr. Sci. 325, 895-902. https://doi.org/10.1016/j.memsci.2008.09.009
  70. Pessela, B. C. Ch., Mateo, C., Fuentes, M., Vian, A., Garcia, J. L., Carrascosa, A. V., Guisan, J. M. and Fernandez-Lafuente, R. (2003) The immobilization of a thermophilic ${\beta}$-galactosidase on Sepabeads supports decreases product inhibition Complete hydrolysis of lactose in dairy products. Enzyme Microb. Technol. 33,199-205. https://doi.org/10.1016/S0141-0229(03)00120-0
  71. Mazzei, R., Giorno, L., Piacentini, E., Mazzuca, S. and Drioli, E. (2009) Kinetic study of a biocatalytic membrane reactor containing immobilized ${\beta}$-glucosidase for the hydrolysis of oleuropein. J. Membr. Sci. 339, 215-223. https://doi.org/10.1016/j.memsci.2009.04.053
  72. Le-Clech, P. (2010) Membrane bioreactors and their uses in wastewater treatments. Appl. Microbiol. Biotechnol. 88, 1253-1260. https://doi.org/10.1007/s00253-010-2885-8
  73. Georgieva, S., Godjevargova, T., Portaccio, M., Lepore, M. and Mita, D. G. (2008) Advantages in using non-isothermal bioreactors in bioremediation of water polluted by phenol by means of immobilized laccase from Rhus vernicifera. J. Mol. Catal. B: Enzym. 55, 177-184. https://doi.org/10.1016/j.molcatb.2008.03.011
  74. Lozano, P., Perez-Marin, A. B., De Diego, T., Gomez, D., Paolucci-Jeanjean, D., Belleville, M. P., Rios, G. M. and Iborra, J. L. (2002) Active membranes coated with immobilized Candida Antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. J. Membr. Sci. 201, 55-64. https://doi.org/10.1016/S0376-7388(01)00703-7
  75. Tan, T., Wang, F. and Zhang, H. (2002) Preparation of PVA/chitosan lipase membrane reactor and its application in synthesis of monoglyceride. J. Mol. Catal. B: Enzym. 18, 325-331. https://doi.org/10.1016/S1381-1177(02)00113-3
  76. Hilal, N., Nigmatullin, R. and Alpatova, A. (2004) Immobilization of cross-linked lipase aggregates withinmicroporous polymeric membranes. J. Membr. Sci. 238, 131-141. https://doi.org/10.1016/j.memsci.2004.04.002
  77. Tan, T., Chen, B and Ye, H. (2006) Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochem. Eng. J. 29, 41-45. https://doi.org/10.1016/j.bej.2005.02.033
  78. Trusek-Holownia, A. and Noworyta, A. (2007) An integrated process: ester synthesis in an enzymaticmembrane reactor and water sorption. J. Biotechnol. 130, 47-56. https://doi.org/10.1016/j.jbiotec.2007.03.006
  79. Severac, E., Galy, O., Turond, F., Pantel, C. A., Condoret, J. S., Monsan, P. and Marty, A. (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzyme. Microb. Technol. 48, 61-70. https://doi.org/10.1016/j.enzmictec.2010.09.008
  80. Pugazhenthi, G. and Kumar, A. (2004) Enzyme membrane reactor for hydrolysis of olive oil using lipase immobilized on modified PMMA composite membrane. J. Membr. Sci. 228, 187-197. https://doi.org/10.1016/j.memsci.2003.10.007
  81. Knezevic, Z., Kukic, G., Vukovic, M. Bugarski, B. and Obradovic, B. (2004) Operating regime of a biphasic oil/aqueous hollow-fibre reactor with immobilized lipase for oil hydrolysis. Process Biochem. 39, 1377-1385. https://doi.org/10.1016/S0032-9592(03)00268-1
  82. Li, S. F. and Wu, W. T. (2009) Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochem. Eng. J. 45, 48-53. https://doi.org/10.1016/j.bej.2009.02.004
  83. Shibatani, T., Omori, K., Akatsuka, H., Kawai, E. and Matsumae, H. (2000) Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application. J. Mol. Catal. B: Enzym. 10, 141-149. https://doi.org/10.1016/S1381-1177(00)00122-3
  84. Sakaki, K., Hara, S. and Itoh, N. (2002) Optical resolution of racemic 2-hydroxy octanoic acid using biphasic enzyme membrane reactor. Desalination 149, 247-252. https://doi.org/10.1016/S0011-9164(02)00773-7
  85. Liu, Y. Y., Xu, J. H., Wu, H. Y. and Shen, D. (2004) Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. J. Biotechnol. 110, 209-217. https://doi.org/10.1016/j.jbiotec.2004.02.008
  86. Wang, Y., Hu, Y., Xu, J., Luo, G. and Dai, Y. (2007) Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J. Membr. Sci. 293,133-141. https://doi.org/10.1016/j.memsci.2007.02.006
  87. Giorno, L., D'Amore, E., Drioli, E., Cassano, R. and Picci, N. (2007) Influence of-OR ester group length on the catalytic activity and enantioselectivity of free lipase and immobilized in membrane used for the kinetic resolution of naproxen esters. J. Catal. 247, 194-200. https://doi.org/10.1016/j.jcat.2007.01.021
  88. Ong, A. L., Kamaruddin, A. H., Bhatia, S. and Aboul-Enein, H. Y. (2008) Enantioseparation of (R,S)-ketoprofen using Candida antarctica lipase B in an enzymatic membrane reactor. J. Sep. Sci. 31, 2476-2485. https://doi.org/10.1002/jssc.200800086
  89. Bhushan, I., Parshad, R., Qazi, G. N., Ingavle, G., Rajan, C. R., Ponrathnam, S. and Gupta, V. K. (2008) Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates. Process Biochem. 43, 321-330. https://doi.org/10.1016/j.procbio.2007.11.019

Cited by

  1. Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid vol.8, pp.39, 2012, https://doi.org/10.1039/c2sm26485d
  2. Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: A comparative study vol.133, 2016, https://doi.org/10.1016/j.molcatb.2016.08.005
  3. Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively vol.31, pp.6, 2015, https://doi.org/10.1007/s40242-015-5209-9
  4. A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly vol.139, pp.8, 2014, https://doi.org/10.1039/C3AN02241B
  5. In vitro enzymatic conversion of γ-aminobutyric acid immobilization of glutamate decarboxylase with bacterial cellulose membrane (BCM) and non-linear model establishment vol.52, pp.4-5, 2013, https://doi.org/10.1016/j.enzmictec.2013.01.008
  6. Expression of chitinase gene in BL21 pET system and investigating the biocatalystic performance of chitinase-loaded AlgSep nanocomposite beads vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.03.119
  7. Green Polymer Chemistry VIII: Synthesis of Halo-ester-Functionalized Poly(ethylene glycol)s via Enzymatic Catalysis vol.34, pp.17, 2013, https://doi.org/10.1002/marc.201300430
  8. Establishing the Feasibility of Using β-Glucosidase Entrapped in Lentikats and in Sol–Gel Supports for Cellobiose Hydrolysis vol.61, pp.3, 2013, https://doi.org/10.1021/jf304594s
  9. Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification vol.35, pp.9, 2014, https://doi.org/10.1016/S1872-2067(14)60111-X
  10. Surface Modification of Halloysite Nanotubes with Dopamine for Enzyme Immobilization vol.5, pp.21, 2013, https://doi.org/10.1021/am4022973
  11. Bifunctional immobilization of a hyperthermostable endo-β-1,3-glucanase vol.98, pp.3, 2014, https://doi.org/10.1007/s00253-013-4953-3
  12. Highly Efficient Enzyme-Functionalized Porous Zirconia Microtubes for Bacteria Filtration vol.46, pp.16, 2012, https://doi.org/10.1021/es3006496
  13. Enzymatic biodiesel: Challenges and opportunities vol.119, 2014, https://doi.org/10.1016/j.apenergy.2014.01.017
  14. Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity vol.13, pp.3, 2012, https://doi.org/10.1021/bm2017228
  15. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst vol.68, 2015, https://doi.org/10.1016/j.enzmictec.2014.09.010
  16. Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190811800
  17. Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes vol.65, pp.3, 2018, https://doi.org/10.1002/bab.1629