DOI QR코드

DOI QR Code

The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase

  • Khalifeh, Khosrow (Department of Biophysics & Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Ranjbar, Bijan (Department of Biophysics & Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Alipour, Bagher Said (Department of Biophysics & Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Hosseinkhani, Saman (Department of Biophysics & Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University)
  • Received : 2010.10.04
  • Accepted : 2010.12.14
  • Published : 2011.02.28

Abstract

Thermodynamic stability and refolding kinetics of firefly luciferase and three representative mutants with depletion of negative charge on a flexible loop via substitution of Glu by Arg (ER mutant) or Lys (EK mutant) as well as insertion of another Arg in ER mutants (ERR mutant) was investigated. According to thermodynamic studies, structural stability of ERR and ER mutants are enhanced compared to WT protein, whereas, these mutants become prone to aggregation at higher temperatures. Accordingly, it was concluded that enhanced structural stability of mutants depends on more compactness of folded state, whereas aggregation at higher temperatures in mutants is due to weakening of intermolecular repulsive electrostatic interactions and increase of intermolecular hydrophobic interactions. Kinetic results indicate that early events of protein folding are accelerated in mutants.

Keywords

References

  1. Loladze, V. V., Ibarra-Molero, B., Sanchez-Ru, L. M. and Makhatadze, G. I. (1999) Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry 38, 16419-16423. https://doi.org/10.1021/bi992271w
  2. Akk, M. and Forsen, S. (1990) Protein stability and electrostatic interactions between solvent-exposed charged side chains. Proteins 8, 23-29. https://doi.org/10.1002/prot.340080106
  3. Roca, M., Messer, B. and Warshel, A. (2007) Electrostatic contributions to protein stability and folding energy. FEBS Lett. 581, 2065-2071. https://doi.org/10.1016/j.febslet.2007.04.025
  4. Garcia-Mira, M. M. and Schmid, F. X. (2006) Key role of coulombic interactions for the folding transition state of the Cold Shock Protein. J. Mol. Biol. 364, 458-468. https://doi.org/10.1016/j.jmb.2006.08.071
  5. Lindman, S., Xue, W., Szczepankiewicz, O., Bauer, M. C., Nilsson, H. and Lins, S. (2006) Salting the charged surface: pH and salt dependence of protein G B1 stability. Biophys. J. 90, 2911-2921. https://doi.org/10.1529/biophysj.105.071050
  6. Loladze, V. V. and Makhtadze, G. I. (2002) Removal of surface charge-charge interactions from ubiquitin leaves the protein folded and very stable. Protein Sci. 11, 147-177. https://doi.org/10.1110/ps.ps.27702
  7. Hendsch, Z. and Tidor, B. (1994) Do salt bridges stabilize proteins? A Continuum electrostatic analysis. Protein Sci. 3, 211-226.
  8. Katherine, L. G. (2005) Eliminating positively charged lysine ${\varepsilon}-NH^{3+}$ Groups on the surface of carbonic anhydrase has no significant influence on its folding from Sodium Dodecyl Sulfate. J. Am. Chem. Soc. 127, 4707- 4714. https://doi.org/10.1021/ja043804d
  9. Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Magyar, R. A., Gonzalez, S. A., Ruggiero, M. C. and Stroh, J. G. (2004) An Alternative Mechanism of Bioluminescence Color Determination in firefly luciferase. Biochemistry 43, 7255-7262. https://doi.org/10.1021/bi036175d
  10. Tafreshi, N., Sadeghizadeh, M., Emamzadeh, R., Ranjbar, B., Naderi-Manesh, H. and Hosseinkhani, S. (2008) sitedirected mutagenesis of firefly luciferase: Implication of conserved residue(s) in bioluminescence emission among firefly luciferases. Biochem. J. 412, 27-33. https://doi.org/10.1042/BJ20070733
  11. Alipour, B. S., Hosseinkhani, S., Nikkhah, M., Naderi-Manesh, H., Chaichi, M. J. and Osaloo, S. K. (2004) Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm Lampyris turkestanicus. Biochem. Biophys. Res. Commun. 325, 215-222. https://doi.org/10.1016/j.bbrc.2004.10.022
  12. Tafreshi, N., Hosseinkhani, S., Sadeghizadeh, M., Sadeghi, M., Ranjbar, B. and Naderi-Manesh, H. (2007) The Influence of Insertion of a Critical Residue ($Arg^{356}$) in Structure and Bioluminescence Spectra of Firefly Luciferase. J. Biol. Chem. 282, 8641-8647. https://doi.org/10.1074/jbc.M609271200
  13. Moradi, A., Hosseinkhani, S., Naderi-Manesh, H., Sadeghizadeh, M. and Alipour, B. S. (2009) Effect of charge distribution in a flexible loop on the bioluminescence color of Firefly luciferases. Biochemistry 48, 575-582. https://doi.org/10.1021/bi802057w
  14. Alipour, B. S., Hosseinkhani, S., Ardestani, S. K. and Moradi, A. (2009) the effective role of positive charge saturation in bioluminescence color and thermostability of firefly Luciferase. Photochem. Photobiol. Sci. 8, 847-855. https://doi.org/10.1039/b901938c
  15. Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The Swiss-Model Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201. https://doi.org/10.1093/bioinformatics/bti770
  16. Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003) Swiss-Model: an automated protein homology-modeling server. Nucleic. Acids. Res. 31, 3381-3385. https://doi.org/10.1093/nar/gkg520
  17. Guex, N. and Peitsch, M. C. (1997) Swiss-Model and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  18. Conti, E., Franks, N. P. and Brick, P. (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287-298. https://doi.org/10.1016/S0969-2126(96)00033-0
  19. Myers, J. K., Pace, C. N. and Scholtz, M. (1995) Denaturant m-values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138-2148. https://doi.org/10.1002/pro.5560041020
  20. Roder, H. and Colon, W. (1997) Kinetic role of early intermediates in protein folding. Curr. Opin. Struct. Biol. 7, 15-28. https://doi.org/10.1016/S0959-440X(97)80004-8
  21. Fersht, A. R., Matoushek, A. and Serrano, L. (1992) The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771-783. https://doi.org/10.1016/0022-2836(92)90561-W
  22. Privalov, P. L. and Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction. Adv. Protein. Chem. 39, 191-263. https://doi.org/10.1016/S0065-3233(08)60377-0
  23. Privalov, P. L. and Gill, S. J. (1989) The Hydrophobic Effect, a Reappraisal. Pure Appl. Chem. 61, 1907-1104.
  24. Kuntz, I. D. (1971) Hydration of macromolecules. III Hydration of polypeptides. J. Am. Chem. Soc. 93, 514-516. https://doi.org/10.1021/ja00731a036
  25. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. and Dobson, C. M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805-808. https://doi.org/10.1038/nature01891
  26. Pace, C. N. (1975) The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1-43. https://doi.org/10.3109/10409237509102551
  27. Pace, C. N. (1986) Determination and analysis of Urea and Guanidium Curves. Methods Enzymol. 131, 266-279. https://doi.org/10.1016/0076-6879(86)31045-0
  28. Zarrine-Afsar, A. and Davidson, A. R. (2004) The analysis of protein folding kinetic data produced in protein engineering experiments. Methods 34, 41-50. https://doi.org/10.1016/j.ymeth.2004.03.013
  29. Eyring, H. (1935) the activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65-77. https://doi.org/10.1021/cr60056a006
  30. Fersht, A. R., Matoushek, A., Bycroft, M., Kellis, J. T. and Serrano, L. (1991) Physical-organic molecular biology: pathway and stability of protein folding. Pure Appl. Chem. 63, 187-194. https://doi.org/10.1351/pac199163020187

Cited by

  1. Kinetic and thermodynamic properties of pseudomonas fluorescence lipase upon addition of proline vol.55, 2013, https://doi.org/10.1016/j.ijbiomac.2012.12.046
  2. Variant of the Thermomyces lanuginosus lipase with improved kinetic stability: A candidate for enzyme replacement therapy vol.172, 2013, https://doi.org/10.1016/j.bpc.2012.12.003
  3. The Effect of Surface Charge Saturation on Heat-induced Aggregation of Firefly Luciferase vol.91, pp.5, 2015, https://doi.org/10.1111/php.12467
  4. Design of thermostable luciferases through arginine saturation in solvent-exposed loops vol.24, pp.12, 2011, https://doi.org/10.1093/protein/gzr051
  5. Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase vol.52, 2013, https://doi.org/10.1016/j.ijbiomac.2012.09.007
  6. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective vol.12, pp.2, 2013, https://doi.org/10.1039/C2PP25140J
  7. The role of trehalose for metastable state and functional form of recombinant interferon beta-1b vol.163, pp.3, 2013, https://doi.org/10.1016/j.jbiotec.2012.11.010
  8. firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant vol.115, pp.1, 2017, https://doi.org/10.1002/bit.26451