DOI QR코드

DOI QR Code

Association of a Single Nucleotide Polymorphism with Economic Traits in Porcine Uncoupling Protein 3 Gene

돼지의 UCP3 유전자의 단일염기서열 변이와 경제형질과의 연관성 분석

  • Oh, Jae-Don (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Kun-Woo (Genomic Informatics Center, Hankyong National University) ;
  • Jung, Il-Jung (Genomic Informatics Center, Hankyong National University) ;
  • Jeon, Gwang-Joo (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University) ;
  • Kong, Hong-Sik (Genomic Informatics Center, Hankyong National University)
  • 오재돈 (한경대학교 유전정보연구소) ;
  • 이건우 (한경대학교 유전정보연구소) ;
  • 정일정 (한경대학교 유전정보연구소) ;
  • 전광주 (한경대학교 유전정보연구소) ;
  • 이학교 (한경대학교 유전정보연구소) ;
  • 공홍식 (한경대학교 유전정보연구소)
  • Received : 2010.09.14
  • Accepted : 2010.12.11
  • Published : 2011.01.30

Abstract

Uncoupling protein (UCP) 3 has a number of proposed roles in the regulation of fatty acid metabolism. A number of polymorphisms in the human UCP3 gene have been identified, and the correlation with obesity related phenotypes evaluated. The objective of this study was to identify SNP in porcine UCP3 gene and to investigate the effect of the SNP on economic traits. The sequencing analysis method was used to identify nucleotide polymorphisms at position 1405 bp (Genebank accession No : AY739704) in porcine UCP3 gene. The SNP (G150R), located in the exon 3, changed the amino acid to glycine (GGG) from arginine (AGG). This G150R showed three genotypes - GG, GR and RR - by digestion with the restriction enzyme Sma Ⅰ using the PCR-RFLP method. The G150R showed significant effects only on back fat (P<0.05). Animals with the genotype GG had significantly higher back fat thickness (1.358 cm) than animals with the genotype GR (1.288 cm, P<0.05) and RR (1.286 cm, P<0.05). However, the genotypes had no significant association with ADG and days to 90kg. According to results of this study, a G allele of the G150R was found to have a significant effect on back fat thickness. It will be possible to use SNP markers on selected pigs to improve backfat thickness, an important economic trait.

Uncoupling protein (UCP) 3 유전자는 갈색지방세포의 미토콘드리아 내막에 존재하며 탈공역 산소(uncoupling oxygen)를 통해 ATP를 생산하는 것으로 알려져 있다. 이는 세포 내의 과다 에너지를 열로 발산시키는 기능을 하고 있다. 본 연구는 돼지의 UCP 3 유전자 내 missense mutation의 유전자형을 조사하고 경제형질과의 연관성을 분석하기 위하여 실시하였다. 돼지의 UCP3 유전자의 염기서열 분석을 통해 1405 bp 지역에서(accession number: AY739704) G염기가 A염기로 치환되는 변이를 확인하였다. 확인된 변이지역은 G가 A로 치환됨으로 인해 150번째 아미노산 서열이 glycine (GGG)에서 arginine (AGG)으로 바뀌는 missense mutation임을 확인하였다. 각 유전자형의 빈도는 0.164(GG), 0.587(GR) 그리고 0.249(RR)로 확인되었으며, 각 대립유전자의 빈도는 0.458(G)과 0.542(R)로 확인되었다. 돼지 UCP3의 G150R 유전자형과 경제형질 간의 연관성을 분석한 결과 등지방두께에 있어 유의적인 연관성이 검출되고 일당증체량과 90 kg 도달일령에서는 유의적인 값이 검출되지 않았다.

Keywords

References

  1. Bao, S., A. Kennedy, B. Wojciechowski, P. Wallace, E. Ganaway, and W. T. Garvey. 1998. Expression of mRNAs encoding uncoupling proteins in human skeletal muscle. Effects of obesity and diabetes. Diabetes 47, 1935-1940. https://doi.org/10.2337/diabetes.47.12.1935
  2. Boss, O., E. Bobbioni-Harsch, F. Assimacopoulos-Jeannet, P. Muzzin, R. Munger, J. P. Giacobino, and A. Golay. 1998. Uncoupling protein-3 expression in skeletal muscle and free fatty acids in obesity. Lancet 351, 1933.
  3. Brun, S., M. C. Carmona, T. Mampel, O. Vinas, M. Giralt, R. Iglesias, and F. Villarroya. 1999. Uncoupling protein-3 gene expression in skeletal muscle during development is regulated by nutritional factors that alter circulating non-esterified fatty acids. FEBS Letters 453, 205-209. https://doi.org/10.1016/S0014-5793(99)00722-X
  4. Cline, G. W., A. J. Vidal-Puig, S. Dufour, K. S. Cadman, B. B. Lowell, and G. I. Shulman. 2001. In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism. J. Biol. Chem. 276, 20240-20244. https://doi.org/10.1074/jbc.M102540200
  5. Dalgaard, L. T. and O. Pedersen. 2001. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 44, 946-965. https://doi.org/10.1007/s001250100596
  6. Damon, M., A. Vincent, A. Lombardi, and P. Herpin. 2000. First evidence of uncoupling protein-2 (UCP-2) and -3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue. Gene 246, 133-141. https://doi.org/10.1016/S0378-1119(00)00061-5
  7. Himms-Hagen, J. and M. Harper. 2001. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp. Biol. Med. 226, 78-84.
  8. Hoeks, J., M. A. van Baak, M. K. Hesselink, G. B. Hul, H. Vidal, W. H. Saris, and P. Schrauwen. 2003. Effect of _1- and _2-adrenergic timulation on energy expenditure, substrate oxidation, and UCP3 expression in humans. Am. J. Physiol. Endocrinol. Metab. 285, E775-E782.
  9. Muzzin, P., O. Boss, and J. P. Giacobino. 1999. Uncoupling protein 3: its possible biological role and mode of regulation in rodents and humans. J. Bioenerg. Biomembr. 31, 467-473. https://doi.org/10.1023/A:1005448423731
  10. Otabe, S., K. Clement, S. Dubois, F. Lepretre, V. Pelloux, R. Leibel, W. Chung, P. Boutin, B. Guy-Grand, P. Froguel, and F. Vasseur. 1999. Mutation screening and association studies of the human uncoupling protein 3 gene in normoglycemic and diabetic morbidly obese patients. Diabetes 48, 206-208.
  11. Schrauwen, P., W. H. M. Saris, and M. K. C. Hesselink. 2001. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J. 15, 2497-2502. https://doi.org/10.1096/fj.01-0400hyp
  12. Simonsen, L., B. Stallknecht, and J. Bulow. 1993. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man. Int. J. Obes. Relat. Metab. Disord. 17, S47-S51.
  13. Spiegelman, B. M. and J. S. Flier. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  14. Urhammer, S. A., L. T. Dalgaard, T. I. Sørensen, A. Tybjaerg-Hansen, S. M. Echwald, T. Andersen, J. O. Clausen, and O. Pedersen. 1998. Organisation of the coding exons and mutational screening of the uncoupling protein 3 gene in subjects with juvenile-onset obesity. Diabetologia 41, 241-244. https://doi.org/10.1007/s001250050897
  15. Walder, K., R. A. Norman, R. L. Hanson, P. Schrauwen, M. Neverova, C. P. Jenkinson, J. Easlick, C. H. Warden, C. Pecqueur, S. Raimbault, D. Ricquier, M. H. Silver, A. R. Shuldiner, G. Solanes, B. B. Lowell, W. K. Chung, R. L. Leibel, R. Pratley, and E. Ravussin. 1998. Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima Indians. Hum. Mol. Genet. 7, 1431-1435. https://doi.org/10.1093/hmg/7.9.1431
  16. Wang, S., A. Subramaniam, M. A. Cawthorne, and J. C. Clapham. 2003. Increased fatty acid oxidation in transgenic mice overexpression UCP3 in skeletal muscle. Diabetes, Obesity and Metabolism 5, 295-301. https://doi.org/10.1046/j.1463-1326.2003.00273.x
  17. Weigle, D. S., L. E. Selfridge, M. W. Schwartz, R. J. Seeley, D. E. Cummings, P. J. Havel, J. L. Kuijper, and H. BeltrandelRio. 1998. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes 47, 298-302. https://doi.org/10.2337/diabetes.47.2.298

Cited by

  1. Identification of a SNP in Cattle HGD Gene with its Effect on Economic Trait in Hanwoo vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1168