DOI QR코드

DOI QR Code

Essential Oil of Thujopsis dolobrata Suppresses Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice

  • Nam, Kung-Woo (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Noh, Jae-Kyu (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Kim, Su-Kwan (G&G Co., Ltd.) ;
  • Lee, Sung-Jin (Department of Animal Biotechnology, Kangwon National University) ;
  • Kim, Kyeong-Ho (College of Pharmacy, Kangwon National University) ;
  • Oh, Ki-Bong (School of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Jong-Heon (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Mar, Woong-Chon (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2010.08.14
  • Accepted : 2010.10.11
  • Published : 2011.01.31

Abstract

We examined the effects of essential oil from Thujopsis dolobrata Sieb. et Zucc. var. hondai Makino (EOTD) (Cupressaceae) on atopic dermatitis (AD)-like skin lesions in NC/Nga mice. Treatment with EOTD twice daily for two weeks ameliorate AD-like skin lesions induced by DNCB (2,4 dinitrochlorobenzene), and clinical scores were reduced to 7.29, 7.07, and 4.5 points in the groups treated with 1.5%, 3.0%, and 6.0% extract (p<0.01) respectively, from the 15.0 score obtained using vehicle. EOTD inhibited the infiltration of mast cells into the AD-like skin lesion in NC/Nga mice (p<0.01) and also reduced serum histamine and IgE levels (p<0.05). Furthermore, it dose-dependently inhibited the release of beta-hexosaminidase from rat basophilic leukemia RBL 2H3 cells. These results indicate that EOTD reduces AD-like skin lesions by inhibiting the production of IgE and histamine, and, thus, IgE-mediated degranulation.

Keywords

References

  1. Alenius, H., Laouini, D., Woodward, A., Mizoguchi, E., Bhan, A. K., Castigli, E., Oettgen, H. C. and Geha, R. S. (2002) Mast cells regulate IFN-gamma expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J. Allergy Clin. Immunol. 109, 106-113. https://doi.org/10.1067/mai.2002.120553
  2. Amon, U., Dieckmann, D., Nitschke, M., Wehrhahn, C. and Wolff, H. H. (1995) The role of basophilic leukocytes in inflammatory skin diseases. Hautarzt 46, 234-239. https://doi.org/10.1007/s001050050246
  3. Barker, J. N., Palmer, C. N., Zhao, Y., Liao, H., Hull, P. R., Lee, S. P., Allen, M. H., Meggitt, S. J., Reynolds, N. J., Trembath, R. C. and McLean, W. H. (2007) Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J. Invest. Dermatol. 127, 564-567. https://doi.org/10.1038/sj.jid.5700587
  4. Brenninkmeijer, E. E., Legierse, C. M., Sillevis Smitt, J. H., Last, B. F., Grootenhuis, M. A. and Bos, J. D. (2009) The course of life of patients with childhood atopic dermatitis. Pediatr. Dermatol. 26, 14-22. https://doi.org/10.1111/j.1525-1470.2008.00745.x
  5. Chen, L., Lin, S. X., Overbergh, L., Mathieu, C. and Chan, L. S. (2005) The disease progression in the keratin 14 IL-4-transgenic mouse model of atopic dermatitis parallels the up-regulation of B cell activation molecules, proliferation and surface and serum IgE. Clin. Exp. Immunol. 142, 21-30. https://doi.org/10.1111/j.1365-2249.2005.02894.x
  6. Chen, L., Overbergh, L., Mathieu, C. and Chan, L. S. (2008) The development of atopic dermatitis is independent of Immunoglobulin E up-regulation in the K14-IL-4 SKH1 transgenic mouse model. Clin. Exp. Allergy 38, 1367-1380. https://doi.org/10.1111/j.1365-2222.2008.02987.x
  7. Choi, J. J., Park, B., Kim, D. H., Pyo, M. Y., Choi, S., Son, M. and Jin, M. (2008) Blockade of atopic dermatitis-like skin lesions by DA-9102, a natural medicine isolated from Actinidia arguta, in the Mg-deficiency induced dermatitis model of hairless rats. Exp. Biol. Med.(Maywood) 233, 1026-1034. https://doi.org/10.3181/0801-RM-19
  8. Elias, P. M. (2008) Barrier repair trumps immunology in the pathogenesis and therapy of atopic dermatitis. Drug Discov. Today Dis. Mech. 5, e33-e38. https://doi.org/10.1016/j.ddmec.2008.05.006
  9. Ference, J. D. and Last, A. R. (2009) Choosing topical corticosteroids. Am. Fam. Physician. 79, 135-140.
  10. Fischer, M., Harvima, I. T., Carvalho, R. F., Moller, C., Naukkarinen, A., Enblad, G. and Nilsson, G. (2006) Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J. Clin. Invest. 116, 2748-2756 . https://doi.org/10.1172/JCI24274
  11. Kawakami, T., Ando, T., Kimura, M., Wilson, B. S. and Kawakami, Y. (2009) Mast cells in atopic dermatitis. Curr. Opin. Immunol. 21, 666-678. https://doi.org/10.1016/j.coi.2009.09.006
  12. Leung, D. Y. (1995) Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. J. Allergy Clin. Immunol. 96, 302-318. https://doi.org/10.1016/S0091-6749(95)70049-8
  13. Leung, D. Y. and Bieber, T. (2003) Atopic dermatitis. Lancet 361, 151-160. https://doi.org/10.1016/S0140-6736(03)12193-9
  14. Levin, C. and Maibach, H. (2002) Exploration of "alternative" and "natural" drugs in dermatology. Arch. Dermatol. 138, 207-211. https://doi.org/10.1001/archderm.138.2.207
  15. Marciniak, J., Zalewska, A., Popko, J. and Zwierz, K. (2006) Optimization of an enzymatic method for the determination of lysosomal Nacetyl-beta-D-hexosaminidase and beta-glucuronidase in synovial fluid. Clin. Chem. Lab. Med. 44, 933-937. https://doi.org/10.1515/CCLM.2006.177
  16. Matsubara, T., Aoki, N., Hino, S., Okajima, T., Nadano, D. and Matsuda, T. (2009) Serum and monoclonal immunoglobulin E antibodies from NC/Nga mice with severe atopic-like dermatitis recognize an auto-antigen, histone H3. Clin. Exp. Allergy 39, 579-590. https://doi.org/10.1111/j.1365-2222.2008.03174.x
  17. Matsumoto, M., Ra, C., Kawamoto, K., Sato, H., Itakura, A., Sawada, J., Ushio, H., Suto, H., Mitsuishi, K., Hikasa, Y. and Matsuda, H. (1999) IgE hyperproduction through enhanced tyrosine phosphorylation of Janus kinase 3 in NC/Nga mice, a model for human atopic dermatitis. J. Immunol. 162, 1056-1063.
  18. Milgrom, H. (2002) Attainments in atop: special aspects of allergy and IgE. Adv. Pediatr. 49, 273-297.
  19. Morita, Y., Matsumura, E., Okabe, T., Fukui, T., Ohe, T., Ishida, N. and Inamori, Y. (2004) Biological activity of beta-dolabrin, gamma-thujaplicin, and 4-acetyltropolone, hinokitiol-related compounds. Biol. Pharm. Bull. 27, 1666-1669. https://doi.org/10.1248/bpb.27.1666
  20. Morita, Y., Matsumura, E., Okabe, T., Shibata, M., Sugiura, M., Ohe, T., Tsujibo, H., Ishida, N. and Inamori, Y. (2003) Biological activity of tropolone. Biol. Pharm. Bull. 26, 1487-1490. https://doi.org/10.1248/bpb.26.1487
  21. Morita, Y., Matsumura, E., Tsujibo, H., Yasuda, M., Okabe, T., Sakagami, Y., Kumeda, Y., Ishida, N. and Inamor, Y. (2002) Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hondai MakBiol. Pharm. Bull. 25, 981-985. https://doi.org/10.1248/bpb.25.981
  22. Noshita, T., Ishiai, S., Furukido, T. and Funayama, S. (2009) Isolation of (-)-4'-demethyl traxillagenin from Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino. J. Nat. Med. 63, 105-106. https://doi.org/10.1007/s11418-008-0285-5
  23. Pariser, D. (2009) Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption. Am. J. Ther. 16, 264-273. https://doi.org/10.1097/MJT.0b013e31818a975c
  24. Qi, X. F., Kim, D. H., Yoon, Y. S., Li, J. H., Jin, D., Deung, Y. K. and Lee, K. J. (2009) Effects of Bambusae caulis in Liquamen on the development of atopic dermatitis-like skin lesions in hairless mice. J. Ethnopharmacol. 123, 195-200. https://doi.org/10.1016/j.jep.2009.03.020
  25. Saeki, H., Furue, M., Furukawa, F., Hide, M., Ohtsuki, M., Katayama, I., Sasaki, R., Suto, H. and Takehara, K. (2009) Guidelines for management of atopic dermatitis. J. Dermatol. 36, 563-577. https://doi.org/10.1111/j.1346-8138.2009.00706.x
  26. Takahashi, K., Nagahama, S., Nakashima, T. and Suenaga, H. (2001) Chemotaxonomy on the leaf constituents of Thujopsis dolabrata Sieb. et Zucc.-Analysis of neutral extracts (diterpene hydrocarbon). Biochem. Syst. Ecol. 29, 839-848. https://doi.org/10.1016/S0305-1978(01)00026-6
  27. Yamaji, K., Mori, S., Akiyama, M., Kato, A. and Nakashima, T. (2007) The antifungal compound totarol of Thujopsis dolabrata var. hondai seeds selects for fungi on seedling root surfaces. J. Chem. Ecol. 33, 2254-2265. https://doi.org/10.1007/s10886-007-9390-2

Cited by

  1. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells vol.2013, 2013, https://doi.org/10.1155/2013/787042
  2. In vitro Na+/K+-ATPase inhibitory activity and antimicrobial activity of sesquiterpenes isolated from Thujopsis dolabrata vol.34, pp.12, 2011, https://doi.org/10.1007/s12272-011-1218-5
  3. Bathing Effects of Various Seawaters on Allergic (Atopic) Dermatitis-Like Skin Lesions Induced by 2,4-Dinitrochlorobenzene in Hairless Mice vol.2015, 2015, https://doi.org/10.1155/2015/179185
  4. Inhibitory effects of Juglans mandshurica leaf on allergic dermatitis-like skin lesions-induced by 2,4-dinitrochlorobenzene in mice vol.66, pp.2-3, 2014, https://doi.org/10.1016/j.etp.2013.10.001
  5. Mast Cell Stabilizing Effect of (−)-Elema-1,3,11(13)-trien-12-ol and Thujopsene from Thujopsis dolabrata Is Mediated by Down-Regulation of Interleukin-4 Secretion in Antigen-Induced RBL-2H3 Cel vol.36, pp.3, 2011, https://doi.org/10.1248/bpb.b12-00375