Effect the Supplementation of Fermented Spent Mushroom (Pleurotus Dietary ervnaii Substrates Growth Performance the Carcass Characteristics on and in Hanwoo Steers

Sang Wan Gal¹**, Yea Hwang Moon²** and Soo Jeong Cho¹*

This study was carried out to investigate the feeding effects of the dietary supplementation of fermented spent mushroom (*Pleurotus eryngii*) substrates with *Bacillus amyloliquefaciens* CS47 and *Saccharomyces cerevisiae* (F-SMS) on growth performance and carcass characteristics of Hanwoo steers. Thirty two Hanwoo steers were allocated into two feeding groups and assigned equally to two dietary treatments; Control (commercial formula feed for Hanwoo steers and rice straw) and TMR including 30% F-SMS. The nutritional values of TMR including 30% F-SMS was higher crude protein (11.67%) and TDN (72.11%) than rice straw, but not significantly different from commercial formula feed (p<0.05). Feed intake was significantly greater in the TMR including 30% F-SMS than the control (p<0.05), but body weight gain and carcass grades were not influenced by the experimental diets. Based on this study, fermented spent mushroom (*Pleurotus eryngii*) substrate with *Bacillus amyloliquefaciens* CS47 and *Saccharomyces cerevisiae* is may be used as an ingredient of feed in TMR for Hanwoo steer.

Key words: Spent mushroom substrates, Bacillus amyloliquefaciens CS47, Hanwoo steer, carcass grade

서 론

최근 우리나라에서는 버섯이 기능성 식품 및 유기농, 친환 경 농산물로 인식되면서 선호도가 급증하여 버섯 소비가 지속 적으로 증가하고 있으며 이에 따라 버섯 생산량과 버섯 재배 후 발생되는 버섯 수확 후 배지의 발생량도 증가하고 있다. 버섯 수확 후 배지는 버섯 1 kg을 생산할 때 5 kg 정도 발생되 는 것으로 보고되었으며[17,28] 대부분 유기질 퇴비[8], 토양개 량제[26], 지렁이 생산용 배지[7] 등으로 이용되고 있다. 그러 나 최근에는 세계적인 곡물 부족현상에 따른 수입량 감소와 곡물 선적선 부족으로 인한 운송비 상승으로 곡물가격이 상승 하면서 버섯 수확 후 배지를 사료로 활용하려는 축산농가가 점차 증가하고 있다. 버섯 배지 원료 중 콘코브, 미강, 밀기울, 면실피, 비트펄프 등은 가축 사료원료로 사용되는 것이며 버 섯 재배과정에서 배지 영양분의 약 20% 정도는 버섯에 의해 이용되고 나머지 80% 정도는 버섯 수확 후 배지에 남아있으므 로 버섯 수확 후 배지는 반추동물 사료원료로써 영양학적 가 치가 있다고 할 수 있다[3,28].

버섯 수확 후 배지 중 반추동물 사료로 가장 먼저 이용된 것은 느타리버섯 수확 후 배지였으며[25], 버섯을 재배하는 과 정에서 버섯균사체에 의해 분해된 버섯 수확 후 배지는 반추

*Corresponding author

Tel: +82-55-751-3397, Fax: +82-55-751-3399

E-mail: sjcho@gntech.ac.kr

동물의 반추위에서 더 쉽게 분해되고, 버섯 수확 후 배지에 남아있는 버섯균사체는 다량의 단백질로 구성되어 있기 때문 에 반추동물에 있어서 반추위 미생물의 단백질 공급원으로 이용될 수도 있다[1,5]. 그리고 Kim 등[16]은 버섯 수확 후 배지 는 독성 중금속과 잔류 농약의 오염이 거의 없기 때문에 위생 적으로 안전하다고 보고하였으며, 버섯 배지에 존재할 수 있 는 유해물질들은 버섯을 재배하는 과정에서 버섯균사체에 의 해 분해되기 때문에 안전하다는 보고도 있다[4,9,10,18,21-24, 26]. 그러나 버섯 수확 후 배지는 난분해성 물질들을 많이 함유 하고 있으며[11,18,29], 수분함량(50~60%)이 높아서 부패되기 쉽고[19], 주원료가 곡물이기 때문에 가축에게 유해한 aflatoxin이나 ochratoxin에 오염될 확률이 높다[13,14]는 문제점이 있다. 따라서 버섯 수확 후 배지를 사료화하기 위해서는 이러 한 문제점을 해결할 수 있는 가공공정이 필요하며 Kwak 등 [19]은 버섯 수확 후 배지를 혐기발효시킬 경우 3주가 경과한 후에도 곰팡이에 의한 오염이 일어나지 않았다고 보고하였다.

우리나라에서 재배되고 있는 병재배 버섯 중 새송이버섯은 재배기술의 발달로 연중 생산되고 있고, 생산설비의 자동화로 대량생산이 주류를 이루고 있어서 버섯 수확 후 배지의 안정적인 수급이 가능하기 때문에 사료화에 적합한 자원이라고 생각된다. 우리나라와 같이 사료원료 대부분을 수입에 의존하고 있는 경우 버섯 수확 후 배지의 사료화는 축산농가의 경영비 절감에 크게 기여할 수 있을 것으로 기대된다.

본 연구는 버섯 수확 후 배지의 기호성과 저장성을 증대시키기 위하여 발효시킨 새송이버섯 수확 후 배지(F-SMS)의 영

¹Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology, 660-758, Korea ²Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea Received September 24, 2011 / Revised November 21, 2011 / Accepted November 23, 2011

^{**}The first two authors contributed equally to this work

양수준을 평가하고 F-SMS를 첨가한 완전혼합사료(TMF)의 급여가 한우 거세우의 증체량과 도체 등급에 미치는 영향을 조사함으로써 새송이버섯 수확 후 배지의 사료적 가치를 평가해보고자 수행되었다.

재료 및 방법

공시동물 및 공시사료

공시동물인 비육기(17-24개월령) 한우 거세우 32두(평균체 중 422±32 kg)는 30개월령까지 사양시험을 실시한 후 도축하였다. 새송이버섯 수확 후 배지 발효산물(F-SMS)은 도준농산(진주시 소재)에서 수거한 탈병 후 24시간 이내의 새송이버섯수확 후 배지와 밀기울 및 콘코브를 각각 5:3·2의 비율로 혼합한다음 1%의 Bacillus amyloliquefaciens CS47[6]과 Saccharomyces cerevisiae 배양액을 접종한 후 상온에서 14일 동안 혐기발효하여 제조하였다. 대조구는 시판배합사료와 볏짚을 공시사료로사용하였으며 처리구는 시판배합사료와 볏짚 대신 30%의F-SMS를 첨가한 완전혼합사료(Total mixed ration, TMR)를 공시사료로 사용하였다. 공시사료의 조성은 Table 1과 같다.

시험설계 및 사양관리

공시동물은 30%의 F-SMS가 첨가된 TMR 사료를 급여한 처리구와 시판배합사료와 볏짚을 분리 급여한 대조구로 나누어 각각 16두씩 배치하였으며, 한 우리 (5×6 m)당 4두씩 수용하여 처리당 4반복으로 실시하였다. 30%의 F-SMS가 첨가된 TMR 사료 급여구는 자유 채식시켰고 대조구는 시판 배합사료의 고급육 사양프로그램에 따라 오전(08:00)과 오후(18:00)로 나누어 1일 2회 급여하였다. 물과 린칼블록은 자유 채식시켰다.

사료섭취량과 증체량

사료섭취량은 사료급여량에서 사료급여 전에 수거한 잔량

Table 1. Ingredient composition (%) of TMR including 30% F-SMS¹⁾ as an experimental diet

Ingredients	Contents
Base-5	5
Corn, ground	20
F-SMS	30
Citrus pulp	5
Flaked corn	9
Cotton seed hull pellet	3
Malt sprout	3.5
Tall fescue	7.5
Ryegrass	7.5
Water	9.5

¹⁾Fermented spent mushroom (*Pleurotus eryngii*) substrates with *Bacillus amyloliquefaciens* CS47 and *Saccharomyces cerevisiae*.

을 공제하여 구하였으며 체중은 매월 1회 측정하였다. 증체량 은 시험개시 체중과 시험종료 체중의 차이로 구하였다.

성분분석 및 도체성적

모든 시료는 105° C 건조기에서 24시간 동안 건조한 후 1 mm screen이 부착된 Thomas willey mill (Thomas scientific Model 4, NJ., USA)로 분쇄하여 사용하였다. 분쇄한 시료의 수분, 조단백질, 조섬유, 조회분 등은 AOAC [2]의 일반성분 분석법에 의하여 구하였고 NDF (Neutral detergent fiber)와 ADF (Acid detergent fiber)는 Van Soest 등[27]의 방법에 준하여 분석하였다.

30개월령에 도축한 도체성적은 농림부 고시 제 2007-40호 의 도체등급 판정기준에 의하여 평가하였다.

통계처리

공시동물의 증체량은 처리구별 개체 체중으로 비교하였으며 사료 섭취량은 처리구별 평균값으로 비교하였다. 본 시험에서 얻은 결과들은 SAS (Statistical analysis system) 프로그램를 이용하여 T-test로 5% 수준에서 유의성 검정을 실시하였다.

결과 및 고찰

새송이버섯 수확 후 배지의 물리적 및 화학적 특성

경남지역에서 가장 많이 재배되고 있는 새송이버섯의 배지 원료는 농장마다 차이가 있었으나 도준농산에서는 새송이버 섯 재배를 위해 톱밥과 옥수수대를 주원료로 사용하고 미강, 콘코브, 소맥피, 건비지, 비트펄프 등을 부원료로 사용하고 있 었다. 새송이버섯 배지의 수분함량은 66.53%였고 새송이버섯 수확 후 배지의 수분함량은 56.22%였다. 새송이버섯 배지는 접종된 버섯의 균사 생장에 따라 배지표면이 점차 흰색을 띠 었으며 균사체에 의해 배지의 결속력이 강해져 덩어리를 형성 하는 경향을 나타내었다. 영양적인 측면에서 새송이버섯 수확 후 배지는 섬유소인 NDF와 ADF 함량이 높고 조지방 함량은 낮은 특징을 나타내었다(Table 2). 또한 새송이버섯 수확 후 배지는 새송이버섯 배지에 비해 조지방과 TDN (Total digestible nutrients) 함량은 감소하였고 NDF, ADF, 조회분 함량은 증가한 것으로 나타났다(p<0.05). Kim 등[16]의 보고에서도 버 섯 배지와 비교하여 버섯 수확 후 배지는 hemicelluose, lignin, 조지방 함량 및 순단백질(TP)/조단백질(CP)비율은 감소하였 고(p<0.05) NDF, ADF, 조회분 함량 및 NPN/CP와 ADF-CP/CP의 비율은 증가하였으며(水0.05) 비섬유성 탄수 화물과 조단백질 함량은 차이가 없었다(p<0.05).

급여사료의 화학적 성분

30%의 F-SMS가 첨가된 TMR 사료와 시판 배합사료 및 볏

Table 2. Chemical composition (%) of mushroom substrates and ${\rm SMS}^{1)}$ for *Pleurotus eryngii*

Items	Mushroom substrates	SMS
Dry matter	33.47	43.78
Crude protein	12.04	13.46
Ether extract	1.9	0.77
Neutral detergent fiber	67.35	70.81
Acid detergent fiber	35.73	48.70
Crude ash	6.86	9.4
Total digestible nutrients	60.68	50.43

¹⁾Spent mushroom substrates

짚의 영양소 함량은 Table 3에 나타내었다. 볏짚은 NDF와 ADF가 각각 75.41%와 51.02%로서 우리나라 평균 볏짚에 해당하는 사료적 가치를 가지고 있었다. 30%의 F-SMS가 첨가된 TMR 사료의 조단백질과 TDN 함량은 시판배합사료와 큰 차이를 나타내지 않았다. Jugdder 등[12]은 버섯 수확 후 배지는 섬유소(NDF) 함량이 높기 때문에 에너지 사료보다는 조사료 자원인 볏짚의 대체효과가 있다고 보고하였다.

발사료 급여 효과

새송이버섯 수확 후 배지가 한우 거세우의 성장에 미치는 영향은 Table 4에 나타내었다. 시험개시 평균 체중은 대조구가 436 kg, 30%의 F-SMS가 첨가된 TMR 사료 급여구가 407 kg이 었고 시험종료 평균 체중은 대조구가 662 kg, 30%의 F-SMS가 첨가된 TMR 사료 급여구가 644 kg이었다. 시험기간 동안 총 증체량은 대조구(226 kg)보다 30%의 F-SMS가 첨가된 TMR 사료 급여구(237 kg)에서 약간 높게 나타났으며 일일 평균 증체량도 대조구(0.74 kg)보다 30%의 F-SMS가 첨가된 TMR 사료 급여구(0.80 kg)에서 약간 높게 나타났으나 유의적인 차이는 없었다(p<0.05). 사료 섭취량은 대조구(10.18 kg)보다 30%의 F-SMS가 첨가된 TMR 사료 급여구(15.35 kg)에서 많았는데 (p<0.05) 이는 새송이버섯 수확 후 배지가 발효될 때 생성된 발효취에 의해 기호도가 상승했기 때문으로 사료된다. Kim 등[15]은 옥수수 계분 사일리지 시험에서 기호성이 증가하면 사료섭취량도 증가한다고 보고하였으며, Lee 등[20]은 버섯폐배지 첨가량이 많을수록 총 사료섭취량도 증가하는 경향을 나타내었다고 보고하였다.

비육기 한우 거세우의 도체성적에 미치는 영향

새송이버섯 수확 후 배지 발효산물을 첨가한 사료가 한우 거세우의 도체 등급에 미치는 영향은 Table 5에 나타내었다. 육질등급에서 1⁺등급 이상 출현율은 30%의 F-SMS가 첨가된 TMR 사료 급여구보다 대조구에서 약간 높은 경향을 나타내 었으나 1등급 이상 고급육 출현율은 30%의 F-SMS가 첨가된 TMR 사료 급여구에서는 100%인 반면 대조구에서는 87.5%로 서 30%의 F-SMS가 첨가된 TMR 사료 급여구의 육질등급이

Table 3. Chemical composition (%) of experimental diets

Items	Diets				
	TMR including 30% F-SMS	Commercial feed	Rice straw		
Dry matter	68.26	89.53	88.00		
Crude protein	11.67	13.40	5.11		
Ether extract	3.34	2.79	2.39		
Neutral detergent fiber	39.72	40.95	75.41		
Acid detergent fiber	23.14	12.26	51.02		
Crude ash	6.82	6.50	17.16		
Total digestible nutrients	72.11	73.00	43.23		

Table 4. Effect of dietary supplementation of TMR including 30% F-SMS (*Pleurotus eryngii*) on body weight gain and feed intake of Hanwoo steers during the experimental period

Tt		Body weight (kg)			Feed intake
Items —	Initial body	Final body	Total gain	Daily gain	(Kg/d)
Control	436±36.83	662±21.38	226±15.29	0.74±0.09	10.18±2.01 ¹⁾
TMF	407 ± 31.38	644 ± 24.42	237 ± 16.09	0.80 ± 0.07	15.35 ± 1.38

 $^{^{1)}}$ Means with different superscript in same column significantly differ (p<0.05).

Table 5. Effect of dietary supplementation of TMR including 30% F-SMS (Pleurotus eryngii) on carcass grade (%) of Hanwoo steers

Dista	Meat quality			Meat quantity		
Diets	>1*	1	<1	A	В	С
Control	68.7	18.8	12.5	25.0	62.5	12.5
TMR including 30% F-SMS	62.5	37.5	0	31.3	37.5	31.2

대조구보다 안정적인 것으로 나타났다. 육량등급에 있어서 A 등급 출현율은 대조구가 30%의 F-SMS가 첨가된 TMR 사료급여구보다 높은 경향을 나타내었으며 C등급 출현율은 대조구가 상대적으로 낮은 경향을 나타내었다.

이상의 결과를 종합하면 발효공정을 거쳐 기호성과 저장성이 개선된 새송이버섯 수확 후 배지의 급여는 육질 향상에는 대조구보다 효과적이었으며 육량등급에서는 처리구별로 큰 차이를 나타내지 않았으므로 새송이버섯 수확 후 배지는 한우거세우의 원료사료로 사용될 수 있을 것으로 사료된다.

감사의 글

본 연구는 2011년 농촌진흥청 공동연구사업(과제번호: PJ006425)에 의하여 수행된 결과의 일부이며 이에 감사드립니다.

References

- Adamovic, M., G. Grubi, I. Milenkovic, R. Jovanovi, R. Proti, L. Sretenovi, and L. Stoievi. 1998. The biodegradation of wheat straw by *Pleurotus ostreatus* mushrooms and its use in cattle feeding. *Anim Feed Sci. Technol.* 71, 357-362.
- 2. AOAC. 2000. Official methods of analysis, 17th eds., Association of official analytical chemists. Washington, D.C.
- 3. Bae, J. S., Y. I. Kim, S. H. Jung, Y. G. Oh, and W. S. Kwak. 2006. Evaluation on feed-nutritional value of spent mush-room(*Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes*) substrates as a roughage source for ruminants. *J. Anim Sci. & Technol. (Korean)* **48**, 237-246.
- 4. Baskaran, S., N. S. Bolan, A. Fahmanm, and R. W. Tillman. 1996. Effect of exogenous carbon on the sorption and movement of atrazine and 2,4-D by soils. *Aust. J. Soil Res.* **34**, 609-622.
- 5. Caswell, L. E. 1990. Fungal additives. Feed Manage. 41, 9-13.
- 6. Cho, S. J. 2009. Isolation and characterization of mannanase producing *Bacillus amyloliquefaciens* CS47 from horse feces. *J. Life Sci.* **19**, 1724-1730.
- Edwards, D. A., L. Burrows, K. E. Fletcher, and B. A. Jones. 1985. The use of earthworms for composting farm wastes. pp. 229-242, In: Gasser, J. K. R. (ed.), Composting of agricultural and other wastes. Elsvier Applies Science Publishers, London.
- 8. Ehaliotis, C., G. I. Zervakis, and P. Karavitis. 2005. Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production. *Sci. Hortic.* **106**, 293-308.
- 9. Ehlers, G. A. and P. D. Rose. 2005. Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation. *Bioresour. Technol.* **96**, 1264-1275.
- 10. Fermor, T., N. Watts, T. Duncombe, R. Brooks, A. Mccarthy, K. Semple, and B. Reid. 2000. Bioremediation: use of com-

- posts and composting technologies. *Mushroom Sci.* **15**, 833-842.
- Jeong, W. H., S. Y. Yang, M. D. Song, J. K. Ha, and C. W. Kim. 2003. Isolation of *Bacillus* sp. producing xylanase and cellulase and optimization of medium conditions for its production. *Kor. J. Microbiol. Biotechnol.* 31, 383-388.
- 12. Jugdder, S., B. J. Ji, G. L. Jin, S. H. Choi, and M. K. Song. 2009. Effects of dietary replacement of rice straw with fermented spent mushroom (*Flammuliua velutipes*) compost on availability of feeds in sheep, and growth performance of Hanwoo steers. *J. Anim Sci. & Technol. (Korean)* 51, 241-248.
- 13. Kabak, B., A. D. Dobson, and I. Var. 2006. Strategies to prevent mycotoxin contamination of food and animal feed: a review. *Crit. Rev. Food Sci. Nutr.* **46**, 593-619.
- 14. Kabak, B. and A. D. Dobson. 2009. Biological strategies to counteract the effects of mycotoxins. *J. Food Prot.* **72**, 2006-2016.
- Kim, J. H., H. Yokata, Y. D. Ko, T. Okajima, and M. Ohshima. 1993. Nutritional quality of whole crop corn forage ensiled with cage layer manure. I. Quality voluntary feed intake and digestibility of the silage in goat. *Asian-Aus. J. Anim Sci.* 6, 45-51.
- 16. Kim, Y. I., J. S. Bae, J. W. Huh, and W. S. Kwak. 2007. Monitoring of feed-nutritional components, toxic heavy metals and pesticide residues in mushroom substrates according to bottle type and vinyl bag type cultivation. *J. Anim. Sci. & Technol. (Korean)* 49, 67-78.
- 17. Kim, Y. I., J. S. Bae, S. H. Jung, M. H. Ahn, and W. S. Kwak. 2007. Yield and physicochemical characteristics of spent mushroom (*Pleurotus eryngii, Pleurotus osteratus and Ammulina velutipes*) substrates according to mushroom species and cultivation types. *J. Anim Sci. & Technol. (Korean)* 49, 79-88.
- Kim, Y. I., S. H. Jung, S. Y. Yang, J. W. Huh, and W. S. Kwak. 2007. Effects of cellulolytic microbes inoculation during deep stacking of spent mushroom substrates on cellulolytic enzyme activity and nutrients utilization by sheep. *J. Anim. Sci. & Technol. (Korean)* 49, 667-676.
- 19. Kwak, W. S., S. H. Jung, and Y. I. Kim. 2008. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. *Bioresour. Technol.* **99**, 2947-2955.
- Lee, S. M., J. H. Hwang, Y. B. Yoon, W. S. Kwak, Y. I. Kim, S. H. Moon, and B. T. Jeon. 2008. Effects of spent mushroom substrates addition on eating behavior of growing Hanwoo. *J. Korean Grassl. Forage Sci.* 28, 107-118.
- 21. Martirani, L., P. Giardina, L. Marzullo, and G. Sannia. 1996. Reduction of phenol content and toxicity in olive oil mill waste waters with the lignolytic fungus *Pleurotus ostreatus*. *Water Res.* **30**, 1914-1918.
- 22. Mashphy, S., D. Levanon, and Y. Henis. 1996. Degradation of atrazine by the lignocelluloytic fungus *Pleurotus pulmonarius* during solid-state fermentation. *Bioresour. Technol.* **56**, 207-214
- 23. Semple, K. T. and T. R. Fermor. 1995. The bioremediation of xenobiotic-contamination by composts and associated

- microflora. Mushroom Sci. 14, 917-924.
- 24. Semple, K. T., N U. Watts, and T. R. Fermor. 1998. Factors affecting the mineralization of [U-C-14]benzene in spent mushroom substrate. *FEMS Microbiol. Lett.* **164**, 317-321.
- 25. Silanikove, N., O. Danai, and D. Levanon. 1988. Composted cotton straw silage as a substrate for *Pleurotus* sp. cultivation. *Biol. Wastes* **25**, 219-226.
- 26. Stamets, P. 2001. Mycova: Helping the ecosystem through mushroom cultivation. http://www.fungi.com.
- 27. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber, and non-

- starch polysaccharides in relation to animal nutrition. *J. Dairy Sci.* **74**, 3583-3597.
- 28. Williams, B. C., J. T. McMullan, and S. McCahey. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. *Bioresour. Technol.* **79**, 227-230.
- Yang, S. Y., M. D. Song, O. H. Kim, and C. W. Kim. 2001. Isolation of *Bacillus* sp. producing multi-enzyme and optimization of medium conditions for its production using feedstuffs for probiotics. *Korean J. Appl. Microbiol. Biotechnol.* 29, 110-114.

초록: 새송이버섯 수확 후 배지 발효산물 첨가급여가 한우 거세우의 성장과 도체등급에 미치는 영향 갈상완¹·문여황²·조수정¹*

(1경남과학기술대학교 제약공학과, 2경남과학기술대학교 동물생명과학과)

본 실험에서는 새송이버섯 수확 후 배지 발효산물 첨가급여가 한우 거세우의 성장과 도체성적에 미치는 영향을 조사하기 위하여 비육기(17-24개월령) 한우 거세우 32두를 공시하여 30개월령까지 사양시험을 수행하였다. 공시동물은 30%의 새송이버섯 수확 후 배지 발효산물(F-SMS)이 첨가된 TMR 사료를 급여한 처리구와 시판 배합사료와 볏짚을 분리 급여한 대조구로 나누어 처리구별로 각각 16두씩 배치하였으며 한 우리(5×6 m)당 4두씩 수용하였다. 30%의 F-SMS가 첨가된 TMR 사료의 영양 가치를 분석한 결과, 30%의 F-SMS가 첨가된 TMR 사료는 볏짚보다는 조단백질(11.67%)과 TDN(72.11%) 함량이 높게 나타났으나 시판배합사료와는 큰 차이가 없었다(p<0.05). 시험기간 동안 사료섭취량은 30%의 F-SMS가 첨가된 TMR 사료 급여구가 대조구보다 유의적으로 많았으나(p<0.05) 공시동물의 증체량에서는 처리구간에 큰 차이가 없었다. 육질등급에서는 30%의 F-SMS가 첨가된 TMR 사료 처리구(100%)의 1등급 이상 출현율이 대조구(87.5%)보다는 높게 나타났으나 육량등급에 있어서는 처리구별로 큰 차이가 없었다(p<0.05). 이상의 결과로 볼 때, Bacillus amyloliquefaciens CS47와 Saccharomyces cerevisiae로 발효시켜 기호성과 저장성이 개선된 새송이버섯 수확 후 배지는 한우 거세우의 원료사료로 사용 가능한 것으로 사료된다.