Effects of Process Parameters on Laser Ablation Based Machining and Measurements

레이저 어블레이션 기반 가공 및 계측에서 공정변수의 영향

  • Jeong, Sung-Ho (School of Mechatronics, Gwangju Institute of Science and Technology) ;
  • Lee, Seok-Hee (School of Mechatronics, Gwangju Institute of Science and Technology)
  • 정성호 (광주과학기술원 기전공학부) ;
  • 이석희 (광주과학기술원 기전공학부)
  • Received : 2011.10.17
  • Accepted : 2011.10.24
  • Published : 2011.12.01

Abstract

The changes of ablation characteristics with respect to laser parameters and material parameters during pulsed laser ablation of solids were discussed with experimental results. Although laser wavelength, laser pulse width, and laser pulse energy are the primary factors to be considered, it is shown that other parameters such as laser spot size and material properties also critically influence on the ablation results. It is further demonstrated that the microstructural characteristics of the target can lead to completely different ablation rate and surface morphology.

Keywords

References

  1. Oh, K. H., Lee, M. K. and Jeong, S. H., "Design and fabrication of a micro-heat pipe with high-aspectratio microchannels," Journal of the KSPE, Vol. 23, No. 9, pp. 164-173, 2006.
  2. Kim, S. H., Chung, D. K., Kim, B. H., Oh, K. H., Jeong, S. H. and Chu, C. N., "Micromachining using Hybrid of Laser Beam and Electrical Discharge Machining," Journal of the KSPE, Vol. 26, No. 10, pp. 108-115, 2009.
  3. Mao, X. L. and Russo, R. E., "Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles," App. Phys. A, Vol. 64, No. 1, pp. 1-6, 1997.
  4. Kuhn, K. J., "Laser Engineering," Prentice Hall, 1997.
  5. Crafer, R. and Oakley, P. J., "Laser Processing in Manufacturing," Springer, 1992.
  6. Liu, J. M., "Simple technique for measurements of pulsed Gaussian-beam spot sizes," Opt. Lett., Vol. 7, No. 5, pp. 196-198, 1982. https://doi.org/10.1364/OL.7.000196
  7. Bonse, J., Wrobel, J. M., Krüger, J. and Kautek, W., "Ultrashort-pulse laser ablation of indium phosphide in air," Appl. Phys. A, Vol. 72, No. 1, pp. 89-94, 2001. https://doi.org/10.1007/s003390000596
  8. Borowiec, H. and Haugen, H. K., "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A, Vol. 79, No. 3, pp. 521-529, 2004. https://doi.org/10.1007/s00339-003-2377-0
  9. Marsh, S. P., "LASL Shock Hugoniot Data," University of California Press, 1980.
  10. Shukla, M., Kashyap, Y., Sarkar, P. S., Sinha, A., Pant, H. C., Rao, R. S., Gupta, N. K., Senecha, V. K. and Godwal, B. K., "Laser induced shock pressure multiplication in multi layer thin foil targets," Nucl. Fusion, Vol. 46, No. 4, pp. 419-431, 2006. https://doi.org/10.1088/0029-5515/46/4/003
  11. Eaton, S. M., Zhang, H., Ng, M. L., Li, J., Chen, W. J., Ho, S. and Herman, P. R., "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express, Vol. 16, No. 13, pp. 9443-9458, 2008. https://doi.org/10.1364/OE.16.009443
  12. Kim, S. H., Sohn, I. B. and Jeong, S. H., "Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining," Appl. Surf. Sci., Vol. 255, No. 24, pp. 9717-9720, 2009. https://doi.org/10.1016/j.apsusc.2009.04.058