Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation

Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현

  • Park, Ji-Young (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Baek, Dong-Won (Division of Applied Life Sciences (World Class University Program), Gyeongsang National University) ;
  • Nili, Mohammad (Dawnesh Radiation Research Institute) ;
  • Kim, Jin-Kyu (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute)
  • 박지영 (한국원자력연구원 방사선과학연구소) ;
  • 백동원 (경상대학교 대학원 응용생명과학부) ;
  • 모하마드닐리 (스페인 도네시방사선연구소) ;
  • 김진규 (한국원자력연구원 방사선과학연구소)
  • Received : 2011.01.14
  • Accepted : 2011.02.13
  • Published : 2011.02.28

Abstract

N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.

NAC는 GSH의 전구물질로, thiol기를 포함하는 항산화제 중 하나로 잘 알려져 있으며, 방사선 조사 시 발생하는 생체 내 영향을 감소시켜 생체 손상의 방호 및 회복에 도움을 주는 방사선 방어제로 이용된다. S. cerevisiae에서 항산화제 NAC를 전처리 함에 따라 이온화 방사선 조사에 따른 효모의 세포사멸 방어효과 및 superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)와 같은 항산화 효소들의 유전자 발현을 분석하여 NAC의 항산화적 효과를 확인하였다. 효모는 다양한 농도의 NAC 전처리 후 다양한 선량의 이온화 방사선에 조사되었으며, 세포생존율은 세포형성단위(CFU)를 계수해 측정되었고, 항산화 효소의 유전자 발현은 real-time PCR수행 후 분석하였다. 우선적으로 효모에 NAC 처리를 위한 적정농도를 확인하였는데, 35 mM 이상의 NAC 농도에서 효모세포의 성장이 억제 되었다. NAC 전처리는 감마선 조사에 의한 세포사멸을 방어하지 않았으며, 100 Gy 방사선 조사는 항산화 효소들의 유전자 발현을 유도하였다. NAC 전처리 후 항산화 효소들의 유전자 발현은NAC의 농도 증가에 따라 감소하였다. 이러한 결과로,NAC의 높은 농도(35 mM 이상)는 효모세포의 성장을 저해하며, NAC는 이온화 방사선 조사에 따른 세포사멸을 방어할 수 없으나, 생체 내에서 활성산소종을 제거 하여 세포를 보호하는 유용한 항산화제임을 알 수 있었다.

Keywords

References

  1. Abt G, H Vaghef, E Gebhart, CV Dahlgren and B Hellman. 1997. The role of Nacetylcysteine as a putative radioprotective agent on X-ray-induced DNA damage as evaluated by alkaline single-cell gel electrophoresis. Mutat. Res. 384:55- 64. https://doi.org/10.1016/S0921-8777(97)00013-X
  2. Aruoma OI, B Halliwell, BM Hoey and J Butler. 1989. The antioxidant action of N-acetylcysteine its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6:593-597. https://doi.org/10.1016/0891-5849(89)90066-X
  3. Baier JE, HA Neumann, T Moeller, M Kissler, D Borchardt and D Ricken. 1996. Radiation protection through cytokine release by N-acetylcysteine, Strahlenther. Onkol. 172:91- 98.
  4. Berg JM, JL Tymoczko and L Stryer. 2004. Biochemistry, Fifth edition. p. 506.
  5. Esnault M, F Legue and C Chenal. 2010. Ionizing radiation: Advances in plant response. Environmental and Experimental Botany. 68:231-237. https://doi.org/10.1016/j.envexpbot.2010.01.007
  6. Jamieson DJ. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 14:1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  7. Johnson P. 2002. Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp. Biochem. Physiol. Part C 133:493-505.
  8. Kataoka Y, JS Murley, KL Baker and DJ Grdina. 2007. Relationship between phosphorylated histone H2AX formation and cell survival in human microvascular endothelial cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs. Radiat. Res. 168:106-114. https://doi.org/10.1667/RR0975.1
  9. Kataoka Y, VP Bindokas, RC Duggan, JS Murley and DJ Grdina. 2006. Flow cytometric analysis of phosphorylated histone H2AX following exposure to ionizing radiation in human microvascular endothelial cells. J. Radiat. Res. (Tokyo) 47:245-257. https://doi.org/10.1269/jrr.0628
  10. Liu Y, H Zhang, L Zhang, Q Zhou, X Wang, J Long, T Dong and W Zhao. 2007. Antioxidant N-acetylcysteine attenuates the acute liver injury caused by X-ray in mice. Eur. J. Pharmacol. 575:142-148. https://doi.org/10.1016/j.ejphar.2007.07.026
  11. Neal R, RH Matthews, P Lutz and N Ercal. 2003. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic. Biol. Med. 34:689-695. https://doi.org/10.1016/S0891-5849(02)01372-2
  12. Pandey S, S Parvez, I Sayeed, R Haque, B Bin-Hafeez and S Raisuddin. 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fich Wallago attu (Bl. & Schn.). Sci. Total Environ. 309:105-115. https://doi.org/10.1016/S0048-9697(03)00006-8
  13. Petrova VY, D Drescher, AV Kujumdzieva and MJ. Schmitt. 2004. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem. J. 380:393-400. https://doi.org/10.1042/BJ20040042
  14. Raftos JE, S Whillier, BE Chapman and PW Kuchel. 2007. Kinetics of uptake and deacetylation of N-acetylcysteine by human erythrocytes. Int. J. Biochem. Cell. Biol. 39:1698- 1706. https://doi.org/10.1016/j.biocel.2007.04.014
  15. Reliene R, JM Pollard, Z Sobol, B Trouiller, RA Gatti and RH Schiestl. 2009. N-acetyl cysteine protectes against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat. Res. 665:37-43. https://doi.org/10.1016/j.mrfmmm.2009.02.016
  16. Selig C, W Nothdurft and TM Fliedner. 1993. Radioprotective effect of N-acetylcysteine on granulocyte/macrophage colony-forming cells of human bone marrow. J. Cancer Res. Clin. Oncol. 119:346-349. https://doi.org/10.1007/BF01208843
  17. Sjodin K, E Nilsson, A Hallberg and A Tunek. 1989. Metabolism of N-acetyl-L-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 38:3981-3985. https://doi.org/10.1016/0006-2952(89)90677-1
  18. Sturtz LA, K Diekert, LT Jensen, R Lill and VC Culotta. 2001. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localizs to the intermembrane space of mitochondria. J. Biol. Chem. 276:38084-38089
  19. Ward JF. 1985. Biochemistry of DNA lesions. Radiat. Res. Suppl. 8:S103-111. https://doi.org/10.2307/3583517
  20. Weiss JF and MR Landauer. 2000. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 899:44-60.
  21. Wolff SP, A Garner and RT Dean. 1986. Free radicals, lipids and protein degradation. TIBS. 11:27-31.
  22. Yu BP. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  23. Zafarullah M, WQ Li, J Sylvester and M Ahmad. 2003. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60:6-20. https://doi.org/10.1007/s000180300001