DOI QR코드

DOI QR Code

Explosion Properties and Thermal Stability of Reactive Organic Dust

반응성 유기물 분진의 폭발특성과 열안정성

  • Han, Ou-Sup (Center for Chemical Safety and Health, Occupational Safety & Health Research Institute) ;
  • Han, In-Soo (Center for Chemical Safety and Health, Occupational Safety & Health Research Institute) ;
  • Choi, Yi-Rac (Center for Chemical Safety and Health, Occupational Safety & Health Research Institute) ;
  • Lee, Keun-Won (Center for Chemical Safety and Health, Occupational Safety & Health Research Institute)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 한인수 (한국산업안전보건공단 산업안전보건연구원) ;
  • 최이락 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2011.06.07
  • Accepted : 2011.06.29
  • Published : 2011.08.31

Abstract

Using 20 L spherical explosion vessel and differential scanning calorimeter (DSC), an experimental investigation was carried on explosion characteristics and thermal decomposition of some reactive organic dust. As the result, the minimum explosion concentration of Benzoyl peroxide (BPO), Phthalic anhydride (PA) and 1-Hydroxybenzotriazol (HBT) exist between 10 and 15 g/$m^3$, which indicates that their explosion sensitivity are high. The maximum Kst values of HBT, PA and 97 % BPO are 251, 146 and 80 [$bar{\cdot}m/s$], respectively and the explosion severity of HBT is the explosion class of St-2. The flame velocity was also calculated from the combustion time of dust and flame arrival time to estimate the flame propagation characteristics in a closed vessel. The decomposition temperature and heat of decomposition reaction for 97 % BPO and HBT are $107^{\circ}C$ (1025 J/g), $214^{\circ}C$ (1666 J/g), respectively and it was found that these low decomposition temperature and high released heat affect the explosion characteristics.

20 L 구형 폭발시험장치와 시차주사열량계(DSC)를 사용하여 반응성 유기물 분진의 폭발 및 열분해 특성을 실험적으로 조사하였다. 그 결과 97 % Benzoyl peroxide(BPO), Phthalic anhydride(PA), 1-Hydroxybenzotri azol(HBT)의 폭발하한은 매우 낮은 농도인 10~15 g/$m^3$의 범위로 측정되어 착화위험성이 높은 것으로 나타났다. HBT, PA 및 97 % BPO의 폭발지수는 각각 251, 146, 80 [bar m/s]로서, HBT는 폭발등급 2에 해당한다. 또한 밀폐계 분진폭발의 화염전파 특성을 추정하기 위하여 용기면에의 화염도달시간과 폭발압력을 고려하여 화염전파속도를 예측하였다. 97 % BPO 및 HBT의 열분해 개시온도와 발열량은 각각 $107^{\circ}C$(1025 J/g), $214^{\circ}C$(1666 J/g)로 나타났는데, 이와같이 낮은 열분해 온도와 큰 발열량이 폭발특성에 영향을 주는 것으로 판단된다.

Keywords

References

  1. 한국산업안전보건공단, 중대산업사고사례 데이터 베이스(1988-2008)
  2. McCloskey, C.M., Ellis, A., "Effect of Moisture on the Ingnition, Burning and Detonation Charateri- stics of Benzoyl peroxide", Tech. Pap. Reg. Tech. Couf. Soc. Plast. Eng., Cleveland Sect. pp.68-71 (1966)
  3. Guideline for Safety Storage and Handling of Reactive Materials, AICHE CCPS, pp.226-228 (1995)
  4. M. Wakakura, I. Yoshiaki, "Trends in chemical hazards in Japan", J. Loss Prev. Process Ind. 12 (1), pp.79-84 (1999) https://doi.org/10.1016/S0950-4230(98)00041-2
  5. Catalyst Systems Inc., "Fire and explosion: hazards of benzoyl peroxide, Case Study, Chemical Safety and Hazard Investigation Board", No.2003-03-C -OH, pp.1-20 (2003)
  6. Cashdollar, K.L., "Overview of Dust Explosibility Characteristics", J. Loss Prev. Process Ind. 10, pp.317-324 (1997) https://doi.org/10.1016/S0950-4230(97)00021-1
  7. Pedersen, L. S., & van Wingerden, K., "Measurement of Fundamental Burning Velocity of Dust-air Mixtures in Industrial Situations. In Dust explosions", Protecting People, Equipment, Buildings and Environment, British Materials Handling Board, pp.140-167 (1995)
  8. Krause, U., Kasch, T., & Gebauer, B., "Velocity and Concentration Effects on the Laminar Burning Velocity of Dust-air Mixtures", Proceedings of the 7th International Colloquium on Dust Explosions, Bergen, Norway, pp.51-54 (1996)
  9. Han, O.S., HAN, I.S., CHOI, Y.R., LEE, J.S., LEE, S.H., "Characteristics of flames Propagating Through Combustible Particles Concentration in a Vertical Duct", Korean Chem. Eng. Res., Vol.49, No.1, pp.41-46 (2011) https://doi.org/10.9713/kcer.2011.49.1.041
  10. BS EN 14034-3, Determination of Explosion Characteristics of Dust Clouds - Part 3 : Determination of the Lower Explosion Limit LEL of Dust Clouds (2006)
  11. Herzberg, M., Proc. of the 18th International Symposium on Combustion, The Combustion Institute, Pittsburgs, pp.717-729 (1981)
  12. BIA/BVS/IES, Brenn und Explosions-Kenngrossen von Stauben, Erich Schmidt Verlag (1987)
  13. Eckhoff, R.K., Dust explosions in the process industries- 3rd ed., Butterworth and Heinemann, Oxford (2003)
  14. Hertzberg, M. and Cashdollar, K. L. "Introduction to dust explosions. In Industrial Dust Explosions", ASTM STP 958, American Society for Testing and Materials (ASTM), Philadelphia, pp.5-32 (1987)
  15. Lewis, B. and von Elbe, G. Combustion, Flames and Explosions of Gases, 3rd ed., Academie Press, London (1987)
  16. Bradley, D., Chen, Z. and Swithenbank, J. R., "Buming rates in Turbulent Fine Dust-air Explosions". In Proceedings of the Twenty-Second Symposium (International) on Combustion. The Combustion Institute, pp.1767-1775 (1988)
  17. Amyotte, P. R., Chipett, S. and Pegg, M. J., "Effects of turbulente on Dust Explosions". Progr. Energy Combus. Sci. 14, pp.293-310 (1989)
  18. Kai-Tai Lua,Ting-Chi Chena, Kwan-Hua Hub, "Investigation of the Decomposition Reaction and Dust Explosion Characteristics of Crystalline Benzoyl Peroxides", J. of Loss Prev. in the Pprocess Ind., 161, pp.246-256 (2009)

Cited by

  1. Explosion Hazards and Flame Velocity in Aluminum Powders vol.16, pp.5, 2012, https://doi.org/10.7842/kigas.2012.16.5.7