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Abstract 
 

Cloud provides dynamically scalable virtualized computing resources as a service over the 

Internet. To achieve higher resource utilization over virtualization technology, an optimized 

strategy that deploys virtual machines on physical machines is needed. That is, the total 

number of active physical host nodes should be dynamically changed to correspond to their 

resource usage rate, thereby maintaining optimum utilization of physical machines. In this 

paper, we propose a pattern-based prediction model for resource provisioning which facilitates 

best possible resource preparation by analyzing the resource utilization and deriving resource 

usage patterns. The focus of our work is on predicting future resource requests by optimized 

dynamic resource management strategy that is applied to a virtualized data center in a Cloud 

computing environment. To this end, we build a prediction model that is based on user request 

patterns and make a prediction of system behavior for the near future. As a result, this model 

can save time for predicting the needed resource amount and reduce the possibility of resource 

overuse. In addition, we studied the performance of our proposed model comparing with 

conventional resource provisioning models under various Cloud execution conditions. The 

experimental results showed that our pattern-based prediction model gives significant benefits 

over conventional models. 
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1. Introduction 

Cloud computing is a new computing paradigm composed of a combination of grid 

computing and utility computing concepts. Cloud provides dynamically scalable virtualized 

computing resources as a service over the Internet; hence, they can handle task scheduling, 

resource provisioning, and allocation over the virtual clusters [1]. Cloud computing is 

implemented with a data center or computing center based on virtualization technology, where 

data centers are used to provide services to clients through the Internet. Due to its dependency 

on virtualization technology, Cloud can handle more sophisticated task scheduling and 

resource allocation mechanisms, such as self-managing and self-healing resource provisioning 

systems [2]. Therefore, virtualization can potentially benefit data centers, reducing the need 

for over-provisioning and hence the costs. 

Virtualization technologies allow one to create multiple Virtual Machines (VMs) on one or 

more physical servers and allocate the necessary network and data center resources in dynamic 

ways. IaaS (Infrastructure-as-a-Service) providers run customers’ VMs as many as possible to 

fully utilize their data center capacity. Once management systems assign VMs on physical 

machines, they execute VMs to run applications which provide services. The number of VMs 

deployed on physical nodes should be enough to accommodate all of the service requests from 

users, while the number of deployed VMs should not be assigned over the cloud capacity.  

In Cloud, applications providing services are run on VMs, and their operations are 

dynamically determined to best match the delivery needs for the current user requests. As the 

population of user requests changes, the population of VMs provisioning services should vary 

to accommodate all of the service requests. For maximum service availability, Cloud 

management systems need to decide the number of VMs on physical machines in advance, 

calculating each VM’s resource capability. In addition, as it is always possible that deployed 

VMs run idle occupying resources and consuming energy, virtualized technology should 

always simultaneously take the redundancy elimination ability into account. 

In Cloud, both guaranteed service provisioning and maintaining higher resource utilization 

are required, which are dependent on the optimization strategy over VM allocation and release. 

To support guaranteed service provisioning and high computing resource utilization 

simultaneously, Cloud management systems need to have the ability to predict the application 

performance to decide when to turn-on and turn-off VMs on physical nodes. A VM 

turn-on/turn-off process usually involves a VM booting time and an on-line migration time for 

service reallocation, which could cause delays in service delivery. From our experiment, in a 

normal environment, VM booting time takes more than 1 minute, and systems should wait that 

amount of time, resulting in service delays. Performance prediction can be used for detecting 

when to prepare for VM booting and service migration in advance. Hence, VM preparation is 

complete before VM allocation/release is actually needed. Good prediction, we believe, 

creates guaranteed service delivery by eliminating VM preparation time in dynamic service 

provisioning environments. Performance is typically predicted by means of aspects of system 

behavior under load. From this context, heavy load prediction should increase more VM 

deployment, and light load prediction should withdraw the existing VM which runs idle. 

In this paper, we propose a pattern-based prediction model for resource provisioning which 

facilitates best possible resource preparation by analyzing the resource utilization and deriving 

resource usage patterns. The focus of our work is on predicting future resource requests by 
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optimized dynamic resource management strategy that is applied to a virtualized data center in 

a Cloud computing environment. To this end, we build a prediction model that is based on user 

request patterns and make a prediction of system behavior for the near future.  

We consider two fundamental aspects when we design a prediction model. First, the 

population of Cloud user requests varies over time. Thus, the prediction should count recent 

user requests more than older ones, and be updated incrementally on on-line basis over time: 

old usage information should be discarded and the most recent usage information should be 

added at the same time. Second, the pattern selection process should be simple enough to 

reduce computational overhead for the Cloud management system and finish within a short 

time interval of two consecutive information collecting actions. 

Our proposed model generates the usage patterns for the given timeframe with information 

which is from user history on VMs. We noticed that well-defined usage patterns could be 

updated incrementally, weighting usage history recorded recently. Moreover, using 

well-defined patterns could save prediction time as the system can avoid complex numeric 

computations, such as simple pattern matching algorithms. As a result, we have defined 

patterns that are incrementally updatable on-line and designed a prediction model to use those 

patterns.  

We also employ sliding windows to collect the number of recent usage histories and support 

incremental updates, in order to capture of the change in resource utilization. Our resource 

usage pattern consists of resource types, service types, and time using the services. Our model 

can do resource provisioning in advance because it can predict the expected resource amount 

through the generated resource patterns. To reduce computational overhead, we employ a 

simple pattern matching algorithm. As a result, this model can save time for predicting the 

needed resource amount and reduce the possibility of resource overuse. We studied the 

performance of our proposed model using comparative experiments with two conventional 

models, such as threshold-based and Fuzzy-based models, under various Cloud execution 

conditions. The experimental results show that our pattern-based prediction model gives 

significant results, compared to other resource provisioning models. 

The rest of this paper is organized as follows. Section 2 summarizes related works for Cloud 

and virtualization technologies as well as approaches in resource prediction in Cloud. In 

section 3, we introduce our pattern-based prediction models. Section 4 presents the detail of 

our findings and performance evaluations. Finally, we conclude our contributions and discuss 

future works in section 5.  

2. Related Work 

2.1 Cloud Technologies 

Recently, a great interest in Cloud computing has been manifested from both academic and 

industry, and numerous projects from industry and academia have been conducted. The 

concept of cloud computing comes from the Amazon Elastic Compute Cloud (EC2) [3], which 

is based on a simple idea: to offer a set of web services and a command line interface that lets 

users manage (create, destroy, migrate, etc.) virtual machine images on the Amazon data 

center. Amazon sells CPU time, which is used by users’ virtual images.  

Starting from EC2, a large set of technologies has been successively developed. In 

commercial contexts, it is worth mentioning IBM’s Blue Cloud [4], Sun Microsystem’s 

Network.com [5], Microsoft Azure Services Platform [6], Google App Engine, and Dell Cloud 
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computing solutions [7]. Most of these commercial systems adopt proprietary solutions, such 

as the virtualization engine by VMWare [8], and relatively few details are available on the 

adopted architecture. Even if the cloud concept is born in the commercial environment, it is 

simply an evolution of the virtualization techniques that have been the object of research in 

recent years. The scientific world has offered many similar solutions in the past, such as the 

idea of the Cluster on Demand proposed in [9]. In the state-of-the-art context, the most 

advanced research project is the Reservoir project [10], which includes technologies such as 

OpenNebula [11]. The most widely adopted virtualization engine is Xen [12], followed by less 

popular alternatives such as Virtualbox [13] and KVM [14].  

A data center is a collection of computers connected through a high-speed network. Data 

centers tend to run a large number of physical servers at a low resource utilization level 

[15][16]. Virtualization could enable server consolidation, increasing the resource utilization 

level and decreasing the necessary investment in equipment. Server consolidation could result 

in effectively reducing over-provisioning, but at the expense of increasing resource 

management complexity. Now there is not only one computer system running on the physical 

server, but several. It is necessary to monitor each virtual machine's workload and dynamically 

adjust resource allocation on-demand. Different virtual machines may run applications that 

have competing quality of service requirements that may not be satisfied at a given point in 

time. Thus, for server consolidation to be effective, improved resource management 

mechanisms need to be devised. Mechanisms are needed that can automatically respond in a 

timely fashion to the unpredictable, time-varying demand experienced by the virtual machines 

running in a physical server and for the hundreds of servers that could be running together in a 

data center. 

2.2 Resource Provisioning and Prediction under Virtualization 

Considerable work has been published to address different issues of resource management in 

large data centers. Since Walsh [17] began to explore the use of utility function in practical 

autonomic computing systems, more recent work [18][19][20][21] has focused on 

utility-based approaches rather than traditional action policies or goal policies. Similarly, in 

this paper, a utility function concerning both the provisioning policy and the amount of unused 

servers is employed in order to maximize or minimize resource utilization. The following 

briefly summarizes other work containing some common elements with this paper’s approach.  

There has been significant research in the area of dynamic resource partitioning, which 

means that resources can be acquired and released on demand. Such architectures can be 

classified as employing share server utility (many services share a server at the same time) or 

full server utility (each server offers one service at a time) models. Several researchers have 

focused on approaches utilizing the full server utility model. In the work of [17][18][19][20], a 

utility-based self-optimizing architecture was proposed, and a prototype system was 

established and then commercialized by collaborating with current available products. 

Bennani [21] addressed the resource allocation problem in a data center hosting several 

application environments. Analytic performance models were used to design controllers that 

dynamically switch servers from one application environment to another as needed. Besides, a 

cluster manager control algorithm called QuID was devised in [22], which focused on issues 

such as how many servers to allocate to an application and how to migrate applications. These 

resource optimization techniques rely on the ideal environment that all servers are virtualized. 

Our model also uses similar environment based virtualization technology. However, our 

model differs from these papers in that herein, a full virtual server model is adopted, which 

means that physical resources are shared.  
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There are considerable efforts about predicting CPU availability using time series analysis. 

Wolski et al. [44][45] presented and evaluated nine linear CPU load prediction models in 

network weather service. Yang et al. [46] also proposed time series based prediction methods 

considering ascending and descending CPU load dynamics. Yaik et al. [47] applied data 

mining methodologies for time series load prediction using associate rules. Methodologies 

using time series analysis are designed and work reasonably well for one step-ahead 

predictions. However, these methodologies reveals weakness for long term predictions 

required for efficient management in virtualized resource provisioning. In addition, rule-based 

approaches are proposed using a set of event-condition-action rules that are triggered when 

some precondition is satisfied (e.g. when some metrics exceed a predefined threshold). For 

example, the HP-UX Workload Manager [23] allowed the relative CPU utilization of a 

resource partition to be controlled within a user-specified range, and the approach of Rolia et 

al. [24] observed resource utilization (consumption) by an application workload and uses some 

“fixed” threshold to decide whether current allocation is sufficient or not for the workload. 

With the growing complexity of systems, even experts find it difficult to define thresholds and 

corrective actions for all possible system states.  

Approaches based on control theory have been applied to resource management to achieve 

performance guarantees. Most of the work assumed a linear relationship between the QoS 

parameters and the control parameters, and involved a training phase with a given workload to 

perform system identification. Typically, control parameters must be specified or configured 

offline and on a per-workload basis. Abdelzaher et al. [25] investigated this approach for QoS 

adaptation in Web servers.  In [26][27], a nonlinear relation between response time and CPU 

allocation to a Web server was studied, and a bimodal model was used to switch between 

underload and overload operating regions. To deal with time-varying workloads, more recent 

work applied adaptive control theory, in which models were automatically adapted to changes 

using online system identification. Model-based research efforts [28] [29] [30] [31][32] have 

been trying to model computer systems from different perspectives. Bennani et al. [33] 

predicts the response time and throughput for both online and batch workloads using 

multiclass open queuing networks. Liu et al. [34] used AR models to map CPU entitlement to 

the mean response time with a fixed workload. Chandra et al. [28] modeled the resource using 

a time-domain queuing model which relates the resource requirements to its workload. Some 

of these approaches made simplifying assumptions, such as using a single queue to model the 

whole system, which could fail to capture complexities of the relationship between application 

workload and resource usage. Some models were validated only using simulations. However, 

our work is based on the analysis of the usage pattern between several performance metrics 

and pattern values. We apply the pattern values to resource utilization analysis for allocation 

and release request prediction. 

Some researches [35][36][37][38][39][40] also proposed similar model-based approaches, 

whereas the unique aspect of the proposed approach is that it has combined patterns and the 

utilization dynamics to predict the transient behavior of application workloads. Diao et al. [41] 

proposed a profit-oriented feedback control system for maximizing SLA profits in web server 

systems. The control system applied fuzzy control to automate the admission control decisions 

in a way that balanced the loss of revenue due to rejected work against the penalties incurred if 

admitted work had excessive response times.  

Our proposed approach differs from the prior works in the following aspects: the resource 

allocation and release process is automatically done without any human intervention. Our 

approach relates the application resource requirements to their dynamic changing workload 

characteristics on an on-line basis. The predictions are updated continuously as new data 
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arrives, which enables our pattern-based model to capture transient or unexpected workload 

changes. 

3. Pattern Based Prediction Model 

3.1 Requirements of Usage Prediction 

In Cloud computing, dynamic optimization virtual machine technology can play an important 

role for high resource utilization, especially for both service availibility and energy efficiency. 

To achieve high resource utilization, a Cloud management system should be able to allocate an 

additional VM to the service when the resource usage is expected to be overcrowded with user 

requests and withdraw VMs when there are VMs running idle. However, VM 

allocation/release involves system preparation time, such as booting time and service 

migration time, which could delay service delivery. Therefore, we need to use prediction to 

avoid delays from preparation periods, as accurate prediction mechanisms would reduce 

preparation time as much as possible in VM allocation and withdrawal involved in dynamic 

virtualization strategy. 

In designing a model for accurate prediction, we identified two major aspects that work as 

requirements in dynamic virtualization strategy in Cloud as follows. 

 

1. The prediction model should be on on-line basis. The model should incrementaly insert 

the most recent resource usage history and delete the most non-important usage history 

automatically. In addition, the size of usage history data should be enough to make 

predictions covering at least VM preparation time and should be small enough not to 

cover old history, which may influence prediction accuracy.   

2. The prediction function should be as simple as possible such that minimal computational 

overhead is guaranteed. The overall computations needed for prediction should not draw 

computational overhead in the Cloud management system, and a prediction computation 

time should not exceed two consecutive usage collection intervals such that the most 

recent usage history is included when making predictions.  

 

We designed a pattern-based prediction model that satisfies the requirements described above. 

To satisfy the first requirement, we employed a sliding window in which new history data was 

inserted, and the oldest data is removed in a given time interval. The slidng window enables 

incremental usage data management, and we can decide appropriate data sizes or time simply 

by selecting and adjusting the windows size. We also design a prediction algorithm such that 

predictions can be computed in an incremental manner. For the second requirement, we 

employed a simple method, where patterns are identified into numeric values, and they can be 

added up to be used for VM allocation/release decisions later. Our pattern-based prediction is 

composed of two phases: 1) the phase of extracting pattern values, and 2) the phase of 

pattern-based prediction. We will describe these two phases in section 3.2 and 3.3, 

respectively.  

3.2 Usage Patterns 

Our proposed model utilizes the flow of resource usage history to generate usage patterns. 
Resource usage flows are obtained from log history data that is collected from virtual 

machines. We basically identified two general cases of resource usage flow: 1) usage increase 
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and 2) decrease. Then, we identified the current gradient of utilization increase/decrease 

dynamics (Fig. 1), and categorized the gradient into several types.  

Table 1 shows patterns types (referred to as pattern values as they are expressed numerically) 

and their conditions. Each pattern type is expressed with its own numeric value such that they 

can be summed up and used for predictions later. The numeric pattern value is obtained from 

the condition described in Table 1, and the condition indicates the gradient of recent resource 

utilization dynamics. We obtained the gradient of the utilization flow using tangent function 

and trigonometrical function in Fig. 2 .  

 

 
Fig 1. Gradient from utilization flows 

 

 
Fig 2. Trigonometrical function 

 

Table 1. Patterns values and their description 

Type (Pattern 

Value) 
Description Condition 

0 
The gradient of resource utilization 

increase is less than π/12 
0 ≤ tan A < 0.27 

1 
The gradient of resource utilization 

increase is within ［ π/12, π/6］ 
0.27 ≤ tan A < 0.58 

2 
The gradient of resource utilization 

increase is within ［ π/6, π/4］ 
0.58 ≤ tan A < 1 

3 
The gradient of resource utilization 

increase is greater than π/4 
1 ≤ tan A 

-0 
The gradient of resource utilization 

decrease is less than π/12 
-0.27 ≤ tan A < 0 

-1 
The gradient of resource utilization 

decrease is within ［ π/12, π/6］ 
-0.58 ≤ tan A < -0.27 

-2 
The gradient of resource utilization 

decrease is within ［ π/6, π/4］ 
-1 ≤ tan A < -0.58 

-3 
The gradient of resource utilization 

decrease is greater than π/4 
tan A < -1 
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Let the two consecutive time-intervals be t1 and t2, and resource utilization rate at each time 

interval be u1 and u2; then, we can obtain the degree tan. After we obtain the gradient of 

utilization flow, we can extract patterns of current utilizations dynamics using Table 1. For 

example, if Δu is 30 and Δt is 15 from Fig. 1, we can calculate tan A and get 2. Then, we can 

extract its corresponding pattern value from Table 1. As tan A is 2 (more than 1), we can 

identify that the gradient belongs to pattern value 3. 

3.3 Resource Allocation and Release Prediction from Patterns 

Our prediction approach uses pattern values obtained from the recent gradients of utilization 

flow, as described in the previous section. In this section, we present a prediction algorithm 

that, using pattern values, is implemented to predict resource usages in the near future. Like 

the pattern values obtained with simple calculation, our prediction model is designed to reflect 

two apsects of 1) simple calculation and 2) incremental update, while attempting to maintain 

prediction accuracy.  

Our algorithm for predictions is described as follows. Let pvi be the pattern values measured 

at time ti, and let k be the number of utilization measurements used in the prediction. Then, we 

define Ui , the predictive utility measured at time ti,, as 

 




i

kij
ji pvU    

 

Then, the utility Ui  is obtained from pattern values within a time frame. Our model utilizes the 

utility Ui  to decide whether to allocate a new VM or to release the existing VM. Our model 

maintains two types of threshold values for the VM allocation/release decision: 1) pv 

threshold (
LU ,

HU ) and 2) utilization threshold 
(

Lu
,

Hu ), where LU  is the lower threshold 

utiliy value, 
HU  represents the upper utiliy value, 

Lu  
stands for the lower threshold regarding 

resource utilization rate, and  
Hu denotes the upper threshold regarding the resource 

utilization rate. A pv threshold is checked when we compute utility Ui, whereas the utilization 

threshold is checked when we measure resource utilization rate iu , at time it . Our model 

decides to release the existing VM only when Ui < U
L
 and u

i
 < u

L
, and it allocates a new VM 

only when Ui > U
H
 and u

i
 > u

H
.  

 

 

Fig. 3. Pattern values from resource utilization flow 
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Fig. 3 shows pattern values which are derived from utilization data collected at five-minute 

interval and illustrates how upper/lower threshold values and pattern values work together. 

Our proposed model uses these values to decide whether the system needs to allocate 

additional resources or release some of currently assigned resources.  In our model, system 

collects resource utilization rate at each of five-minute timeframe and then compares 

utilization rates collected in adjacent timeframes to derive pattern values. The numeric values 

in right-bottom boxes in Fig. 3 show pattern values measured at each timeframe. As pattern 

values in four adjacent time-frames in Fig. 3 are (-1, -1, -1, -1) totaled -4, the system compares 

current utilization rate with lower threshold value. At a point current utilization rate is under 

30% and totaled pattern value is -4 (shown as a boxed number marked as “Release” in Fig. 3), 

systems decide to release an available resource. Likewise, values in middle-bottom boxes are 

(1, 1, 1, 1) totaled 4 and resource utilization rate is over 80% (the circled number marked 

“Allocation” in Fig. 3). So the system makes decision to allocate an additional resource. 

 

  
Fig 4. Response times for resource (memory) usage rates 

 

Since threshold values provide a critical role in deciding when to allocate/release VMs, we 

evaluated memory usage rate and the corresponding response time to figure out which 

threshold value can provide the most efficient VM management performance. Fig. 4 illustrates 

the relationship between VM’s response time and resource utilization rate. As a result, we 

determined upper threshold to be 80% because as the response time increases dramatically at 

the point around the memory usage rate 80% and we thought the system needs to allocate new 

VM to reduce response time at that point. And we determined the release point to be 30% 

because the response time is almost same when the resource utilization is less than 30%. 

Therefore we conclude it would be OK to release a VM when the system usage rate is less than 

30%.  

 

 
Fig 5. The resource utilization flow graph  
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In addition, we conducted an experiment to find the most appropriate timeframe to 

allocate/release resources. We set three requirements for deciding time interval values: 1) to 

reflect utilization dynamics sufficiently avoiding incorrect optimistic decisions, 2) to reduce 

mis-prediction of allocation/release actions, and 3) to keep the VM preparation and migration 

time within each time-interval. Fig. 5 is the resource utilization flow graph that it is generated 

from our experimental environment with a number of random data. Red colored circles in Fig. 

5 indicate timeframes after which resource utilization rates continue to be over 80% for at least 

25 minutes. Table 2 shows prediction performance – the rate of successive prediction - with 

various time-intervals such as 2min, 5min, 10min, 20min, and 30min. As you can see from 

Table 2, 2 minute interval is too small as there can be too many mis-predictions, and 10 

minute-interval is too long as it misses a chance of needed VM allocation and may result in a 

service delay. Thus we pick 5-minute as the best time interval for our model. In Table 2, 

appropriate requests is defined to be the request after which resource utilization rates continue 

to be over upper threshold for some periods (in our experiment, 20 minutes). If resource 

utilization rate decreases to the rate under upper threshold right after additional resources are 

allocated, then the system may have unnecessary resource allocation as system can manage all 

the resource usages without additional resources. We define requests occurred in this case as 

inappropriate requests. Likewise, if resource utilization rates continue to be over upper 

threshold for some time periods without any additional resource allocation, the system may 

have service delay due to resource over-utilization. We call requests occurred in this case as 

missing requests.  

  

Table 2. Prediction success rate based on time-interval values 

Time 

Interval 

Total number of 

allocation/release 

requests 

Appropriate 

requests 

Inappropriate 

or missing 

requests 

Prediction 

Success Rate 

2min 9 4 5 44% 

5min 5 4 1 80% 

10min 3 3 1 80% 

20min 3 3 1 80% 

30min 2 2 2 50% 

4. Evaluation 

4.1 Experiment Configuration 

For our experiments, we used 6 physical nodes. Each physical node is configured as dual core 

3.00 GHz CPUs, 1GB Memory, 120 GB local disk space, and connected to the others by 

High-speed ethernet. We used only a 1Gbps Ethernet for the network communication. Every 

node is operated under Fedora Linux Core 8, and has own local disk and shares the home 

directory through NFS. To implement virtualization, each physical node includes Xen and 

Globus and is capable of operating at most two VMs (Fig. 6). To provide sufficient load on 

each physical node for measuring of system performance, we designed and implemented 

Indexer Service in Grid IR system. We used TRAC data (784MB of 49,026 HTML files) for 
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indexing. And we used additional tools for experiments such as Apache Ant 1.6.5, Apache 

Lucene 2.4.1, and Apache Log4j-1.2.8. 

 

 
Fig 6. The Experimental environment 

4.2 Overheads for Virtualization 

Because we use Xen and Globus middleware for virtualization, we conducted experiments to 

know how the virtualization impacts on indexing performance. We compared 4 types of 

system configuration – None, GT, Xen, and GTX (GT and Xen) for overhead analysis. We 

used the processing time and resource utilization as virtualization overhead indicators.  

 

 

Fig 7. Performance comparisons with one VM for one physical node  

 

 

Fig 8. Performance comparisons with two VMs for one physical node 
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Fig. 7 and Fig. 8 show indexing time and resource utilization rate with the various number 

of VMs per one processor. As a result, we found that virtualization middlewares such as Xen 

and Globus do not bring on noticeable system overhead. We also identified the similar results 

in [42].  

4.3 Analysis Using Resource Usage History 

We conducted experiments with the existing resource history which was compiled in advance. 

We compared experimental results with those of threshold-based provisioning and 

Fuzzy-based provisioning [43]. In the threshold-based model, the upper threshold value is set 

to 80% for resource allocation and the lower threshold value is set to 30% for resource release. 

Fuzzy-based model used the fuzzy logic to deal with the complexity of the virtualized data 

center and the uncertainties of the dynamically changing workloads.  

 

 

Fig 9. Allocation analysis from the existing resource usage data 

 

Fig. 9 shows analytical results in terms of resource allocation. We compared the results 

from three approaches - pattern-based, threshold-based, and fuzzy-based one. The number of 

resource allocation in threshold-based model was eight and only four of the eight requests 

were appropriate. In fuzzy-based model, the result is similar to that of threshold-based mode. 

In contrary, the number of resource allocation in pattern-based model was five and four of the 

five allocations were appropriate.  

 
Table 3. Comparisons of three approaches for resource allocation decision success rate  

 Appropriate Inappropriate Total Rate 

Threshold 4 4 8 50% 

Fuzzy 4 4 8 50% 

Pattern 4 1 5 80% 

 

The results in table 3 indicate that the success rate of the threshold-based resource 

allocation and fuzzy-based resource allocation were 50% each. However, the appropriate rate 

of pattern-based resource allocation was 80%. As a result, the proposed approach seems to be 

30% better than other approaches.  
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Fig 10. Performance comparison for time-series predictors 

  

Fig. 10 illustrates performances of existing predictors using time series analysis 

(mean-based  [44], median-based [44], association rule[47], homeostatic and tendency [46]) 

and our approach (pattern) using 5-minute interval usage history data. Results show that 

existing predictors make more inappropriate allocation requests than our approach does. We 

speculate the reason would be that existing predictors focos on only one step-ahead 

predictions and hence reveal weakness in terms of long-term prediction, which is required to 

make appropriate prediction case. As shown in Fig. 10, association rule based approach 

generates eight allocation requests,  homeostatic and Tendency approach has five allocation 

requests, and both mean-based approach and median-based approach make  seven allocation 

requests. However our proposed approach has five allocation requests, which is minimum. 

Fig. 11 shows analytical results for the resource release case from the pattern-based, 

threshold-based, and fuzzy-based approach. The number of resource release requests in the 

threshold-based model was five and only three times of total requests were detected 

appropriate, and the result in fuzzy-based model was similar to threshold-based model’s one. 

However, the pattern-based model makes only three requests and all of the requests were 

appropriate.  

 

 
Fig 11. Resource release with the existing resource history 

 

The result in table 4 shows that success rate of threshold-based resource release and 

fuzzy-based resource release was 60% and the success rate of pattern-based model was 

100%. As a result, the proposed model is presented 40% better than other two models.  
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Table 4. Comparisons of three approaches for resource release deicsion success rate  

 Appropriate Inappropriate Total Rate 

Threshold 3 2 5 60% 

Fuzzy 3 2 5 60% 

Pattern 3 0 3 100% 

4.4 Analysis in a physical node 

We also conducted experiments with a server that are overloaded from a task generator in real 

time. We compared results with threshold-based provisioning, fuzzy-based provisioning, and 

our pattern-based provisioning. 

 

 
Fig 12. Decisions for resource allocation from real time usage monitoring 

 

Fig. 12 shows results from experiments we conducted with three different models. The 

number of resource allocation in threshold-based model is seven and only four times of total 

requests are found appropriate. And fuzzy-based model is six and four times of total requests 

are found appropriate. In contrast, four times of total requests are appropriate among the five 

times of total resource requests in the pattern based model. 

 
Table 5. Comparisons of decision success rate for resource allocation 

 Appropriate  Inappropriate  Total  Rate  

Threshold  4  3  7  57%  

Fuzzy 4 2 6 60% 

Pattern  4  1  5  80%  

 

Table 5 is the overall results. The success rate of threshold-based model is 57%, 

fuzzy-based model is 60% and the success rate of pattern-based model is 80%. As a result, 

the proposed model is over 20% better than threshold-based model.  

Fig. 13 shows analytical results the three models. The number of resource releases in 

threshold-based model and fuzzy-based one was five each, and only two of total requests were 

appropriate. In contrary, the number of resource releases in pattern-based model was two and 

all requests were appropriate. 
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Fig 13. Release decisions from real time usage monitoring 

 
Table 6. Comparisons of success rate for resource release from real time usage monitoring  

 Appropriate  Inappropriate  Total  Rate  

Threshold  2  3  5 40%  

Fuzzy 2 3 5 40% 

Pattern  2 0 2 100%  

 

Table 6 shows that the success rate of the threshold-based model is 40%, fuzzy-based 

model is 40% and the success rate of pattern-based model is 100%. Again, the proposed model 

is illustrated that it is much more effective than other two models.  

4.5 Analysis in multiple physical nodes 

Finally, we performed a test on multiple servers. These servers are overloaded by a task 

generator. Job processing is conducted by a master server and two work nodes. If a 

master server needs additional resources, it assigns its jobs to two work nodes. In such 

case, job scheduler in the master server primarily allocates jobs to the work node 1, and 

if work node 1 is detected working - the resource utilization is over the work node 

threshold -, the job scheduler allocates them to work node 2. 

 

 

Fig 14. Resource usages and allocation decisions on threshold based approach 

As you can see in Fig. 14 and Table 7, in threshold based approach, a master server 

utilization rate is averaged 72%, and the two work nodes have 28% average utilization rates. 
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The total resource utilization of a master server and two slave work nodes has a 50% percent 

averaged. Note the utilization rate in the threshold-based approach varies frequently from 69% 

to 92% during experiment time span. 

 

 

Fig 15. Resource usages and allocation decisions on fuzzy based approach 

The result of the fuzzy-based approach is shown in Fig. 15 and Table 7. As you can see the 

result, utilization flow is more stable than the threshold-based approach. And the request 

number of resource allocation and resource utilization is better than threshold-based one. A 

master server of all work nodes has 75% of the whole utilization and two work nodes have 

27% of the whole utilization averagely. The total resource utilization of a master server and 

two work nodes has 51% averagely. 
 

 
Fig 16. The analysis of resource utilization based on pattern based approach 

 

Table 7. The analysis based on threshold-based approach 

 Total # of 

requests 

Master Server  

Avg. Utilization 

Two Work nodes  

Avg. Utilization 

Overall Avg. 

Utilization 

Threshold  7 72% 28% 50% 

Fuzzy 6 75% 27% 51% 

Pattern 5 76% 24% 50% 

 

The result of the proposed approach is shown in Fig. 16 and Table 7. In contrast, the system 

with the pattern-based approach had a small difference in the resource utilization flow with 

time. Furthermore, this approach is better than threshold-based approach and fuzzy-based 

approach as it operates with 50% percent on average due to the fact that the average resource 

utilization of two other types of work nodes operates with 24% on average. 
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Fig 17. Resource utilization of work nodes in all approaches 

 

Table 8. Standard deviation of each work node utilization rates 

 Avg. Utilization Std. in Utilization 

Threshold: work node1 29.8% 0.07102 

Threshold: work node2 27.0% 0.07905 

Fuzzy: work node1 25.0% 0.06947 

Fuzzy: work node2 29.9% 0.07050 

Pattern: work node1 28.0% 0.07543 

Pattern: work node2 21.8% 0.04303 

 

Fig. 17 and Table 8 shows dynamics of resource utilization in two work nodes, and each 

approach exhibits its own dynamics in terms of resource utilization rate due to variation in job 

scheduler’s allocation policy. As threshold based approach invokes more frequent resource 

allocation requests, the approach brings the most utilization rate from work nodes. Similarly, 

fuzzy based approach has more work node utilization rate than pattern-based approach, as it 

has more requests than pattern based approach.  

In addition, in pattern based approach, work node 2 runs idle more than half of experimental 

time periods continuously. That makes more opportunities that work node 2 moves into sleep 

mode with minimum chances of sleep/wake-up process. Therefore, pattern-based approach 

can provide more efficient resource management in terms of power consumption and service 

delay.   

5. Conclusion 

In this paper, we proposed a pattern-based prediction model that enables high resource 

utilizations in a virtualized Cloud environment. Our prediction model enables to predict and 

prepare the needed resources before users begin to request them, in order to earn time to 

prepare VM setup and migration and hence to provide Cloud environments that reduce the 

chances of encountering delay. To this end, we developed and employed pattern-based models 

that show dynamics of resource utilization flow. Our model is designed simple and hence can 

save computational overhead to predict the amount of needed VMs in near future.  

To validate our approach, we conducted various types of experiments to demonstrate 

benefits from the proposed model, in comparison with the conventional service provisioning 

environment: threshold based provisioning and fuzzy based provisioning. Our experiments 

include simulations with request history and run-time resource utilization monitoring with 
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data from load generator, and we found our approach is better than other two approaches in all 

of evaluation circumstances we conducted. The success rate of resource allocation/release and 

the efficiency of resource management in the proposed model show our approach is better than 

the conventional threshold-based model and fuzzy model. 

The evaluation results demonstrate comparative advantages of our pattern based approach 

against other approaches including the traditional CPU load predictors and how our model is 

compatible to the needs of dynamic VM management. The presented model, as experimental 

results have shown, is highly effective at reducing the number of VM allocations and releases 

in diverse Cloud environment. As a result, our model can minimize the number of unnecessary 

VM allocations and releases, while maintaining the number of available VMs to accommodate 

all the needed amount of service requests with minimum delay. 

Although the proposed model has several benefits, there are still areas for further 

improvements. We plan to expand our pattern types to reflect geographical dynamics in Cloud 

environment. For example, physical servers to be used can be distributed geographically and 

service quality may vary depending on the location of physical servers. Therefore, VM 

migration decision should reflect that.  
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