
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1841

Copyright ⓒ 2011 KSII

The part of this paper was presented in the ICONI (International Conference on Internet) 2010, December 16-20,

2010, Philippines. This work was supported by Mid-career Researcher Program through NRF grant funded by the

MEST (No. R01-2008-000-20485-0)

DOI: 10.3837/tiis.2011.10.010

Performance Testing of Composite
Web-Service with Aspect-Based WS-BPEL

Extension

Jong-Phil Kim, Dong-Hyuk Sung and Jang-Eui Hong
Dept. of Computer Science, Chungbuk National University

Cheongju, 361-763, Rep. of Korea

[e-mail: {kimjp, sungdh}@selab.cbnu.ac.kr, jehong@chungbuk.ac.kr]

*Corresponding author: Jang-Eui Hong

Received March 31, 2011; revised July 28, 2011; accepted October 26, 2011;

published October 31, 2011

Abstract

The advance in Service-Oriented Architecture (SOA) and web services has led to the

development of new types of a system in which heterogeneous service components can

connect and compose to solve a complex business problem. In the SOA, even though these

service components are valid in their functionality, there is a need to test their behaviors when

those services are composited. In recent years, WS-BPEL has received a wide acceptance as a

means of integrating distributed service components. To test the composite service, the

existing testing techniques have been focused on the functional features based on the

WS-BPEL process. However as SOA approach is applying to real-time software development,

the performance of composite service becomes one of important issues. This paper proposes a

technique to the performance testing of a composite service with WS-BPEL extension which

combined with the concept of aspect. Our WS-BPEL extension has been made towards

annotating aspect component which is measuring the response time of the composite service.

This paper also explains the procedure of performance testing with on-line transaction system.

Our technique can apply to choose an adequate component in service composition with

considering the performance among several candidate web service components.

Keywords: Composite service, performance testing, WS-BPEL, aspect component

1842 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

1. Introduction

Service-Oriented Architecture (SOA) is a special component model which exposed the

collaborating scheme among applications (i.e. services) through well-formed contracts and

interfaces [1]. A service-oriented software system provides its functionality by the

composition of service components scattered on a network, such as the Internet, for satisfying

complex business requirements [2]. To specify the service collaboration scheme called service

composition, most SOA approaches use the WS-BPEL (Web Service-Business Process

Execution Language) which can specify new service with the composition of existing service

components [3]. The WS-BPEL defines the calling sequence among services with high-level

interface signature to specify a new service. It allows a enterprise to build quickly or adapt new

business services by coordinating different web services.

The use of WS-BPEL can expedite the implementation of web service compositions.

Although it provides simple and effective specification of the service composition, incorrect

specification of WS-BPEL can cause the wrong behaviors of the service. The WS-BPEL

specification for a complex business process including a number of services can be difficult to

understand and be inherently error-prone [4]. Therefore the service specification written in

WS-BPEL must be investigated whether service requirements were met or not, in order to

ensure the correctness of composite service. To test the composite service, the existing testing

techniques based on the WS-BPEL have been focused on the functional and structural features

such as invalid input or output data, composition process validation and service invocation

failure. As the SOA approach has been applying to the development of various software

domains, the performance testing of composite service including real-time transaction

processing becomes one of interesting research issues [5][6][7].

This paper suggests an approach to test the performance of composite service through the

extension of WS-BPEL. This extension was made with the application of aspect-oriented

programming concept [8]. Using the extension, we are able to add an aspect component to

WS-BPEL specification as one of crosscut concerns for service performance testing. To test

the performance of composite service, in this paper, we develop the aspect component for

measuring the response time of composite service and define a performance testing procedure.

We also conduct experiments with on-line transaction system to evaluate the applicability of

our approach. By using the aspect component which can provide single-code and multiple-use

principle, our proposed technique can reduce the effort for testing readiness and the time for

test code development compared with the existing studies.

This paper is organized as follows; Section 2 describes the background and related work.

Section 3 explains about what to and how to extend the WS-BPEL, and we propose our

performance testing approach in section 4. We also conduct the implementation and

experiment of our technique in section 5. Finally, section 6 concludes our paper and briefly

discusses the future work.

2. Related Work

2.1 Service Composition using WS-BPEL

WS-BPEL can specify the control logic for orchestrating multiple web services participanting

in a process flow by making reference to the web service description language (WSDL)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1843

description of a service. The (a) and (b) in Fig. 1 show the structures of process definition

using WSDL and WS-BPEL, respectively [1][3][9].

Fig. 1. Structures of WSDL and WS-BPEL

The information of a service is defined in WSDL specification. As shown in Fig. 1.(a), the

upper part describes the type, transmit or receive message, interface, etc of a service and the

lower part describes the name, physical location, and communicating protocol for the service.

The <partnerLink> element of WS-BPEL, shown in Fig. 1.(b) defines the service participating

in the composition by reference to WSDL specification, and the <sequence> element specifies

a control logic defining the execution flow of participant services. More detail syntax and their

meaning can be referred in WS-BPEL standard [3]. This WS-BPEL specification represents

the configuration of service compositions, thus the specification is needed to validate whether

it satisfies the requirements of the composite service or not.

2.2 Web Service Testing

As SOA is recently realized in web service area, there is an increasing concern to test web

services. Especially, substantial efforts have been consumed on testing a single web service

and composite service. Most researches for testing a single web service use the information of

WSDL specification, such as interface types, message types and operations, to generate test

cases for ensuring the correctness of the service [10][11]. The representative study on the

WSDL-based testing technique is performed by Tsai [12]. In order to test a web service, he

extended the WSDL features to specify the useful information for testing, such as input-output

dependency, invocation sequence, hierarchical functional description and concurrent sequence

specification. Other similar studies about web service testing have proposed as a test

framework to facilitate web service testing [13][14].

One of the WS-BPEL based testing for composite service is performed by Lertphumpanya

[15]. He developed a testing framework which identifies whole workflow paths for composite

service, and performed coverage testing for each workflow path. Li [16] proposed a

WS-BPEL unit test framework to facilitate the testing and debugging of WS-BPEL processes.

As the framework includes a composition model, a test architecture, a lifecycle management

schema, a test design outline and a test coverage criterion, it provided the infrastructure for

unit testing tools based on WS-BPEL. Yean [17] described a graphical model, called BPEL

1844 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

Flow Graph (BFG), to represent a WS-BPEL process in a graphical flow. By traversing the

BFG, concurrent test paths and test data for each path can be generated using a constraint

solving method. Cao [18] proposed a WS-BPEL verification framework. In the framework,

WS-BPEL process is modeled using UML activity diagram and the diagram is verified by a

model checker. However these researches have been only focused on the testing of service

functionalities without considering the performance of composite service.

OASIS TAG (Test Assertions Guidelines) [19] guides to specify a test assertion with the

goal of improving the testability for functional conformance. The guidelines provide the

design and description methods to develop test assertions via examples. OASIS XTemp (XML

Testing and Event-driven Monitoring of Processes) [20] is a specification of XML-based

script language which is used to analyze, test, and monitor the service processes or

transactions between business partners. These specification stantards focused on how to

design and describe test suites or test cases for a formal and processable testing. However our

research works address to the technique and the process of performance testing for

WS-BPEL-based composite service.

2.3 Performance Analysis of Web Service

There have been several studies that address the performance issue from web service domain.

Peng [21] proposed a grid service monitoring framework for performance monitoring on

various grid services. He implemented it for monitoring the resource of services and shown

how the framework work with a simple example service. Bertolino [22] proposed an approach

to assess the performance properties for stand-alone services in the PLASTIC project. In

Chandrasekaran [23], a service composition and execution tool for evaluating the performance

of a web service is proposed. The tool provides a technique for execution time analysis and

execution monitoring that can be used to evaluate the performance of individual web services

by the simulation of service execution.

Almost existing techniques for web service-based performance testing simulate the services

in test framework which inserts the script code to monitor and estimate the execution time of

each service. But these performance testing techniques require lots of efforts to develop the

monitoring codes for every service application, and to develop the test framework to control

the code execution. Also these techniques are inadepuate to test the real performance because

of simulation-based estimation. Therefore it needs an effective and inexpensive testing

technique for the performance of composite service in real situation.

3. Extension of WS-BPEL

Our proposed approach tests the performance of composite service with the aspect-oriented

concept when a WS-BPEL process is executed. The performance testing is considered to be

the common concern of aspect-oriented concept. Fig. 2 shows the overview of our testing

approach using WS-BPEL specification and aspect component.

The aspect component, shown in Fig. 2, has the attribute “PointCut” and two operations,

“BeforeAdvice” and “AfterAdvice.” The “PointCut” is used to pinpoint the service for the

performance testing in a WS-BPEL process. Whenever an interested service invocation occurs

during the execution of the WS-BPEL process, the advice of the aspect component will be

executed. The “BeforeAdvice” calls the function “StartTimer()” of the timer service before the

operation of invoked service is executed for measuring the response time of the service. After

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1845

the invoked service operation was executed, the “AfterAdvice” of the aspect component calls

“StopTimer()” function. The measured response time is the test result of performance.

To implement our performance testing approach, it is necessary to specify the features of

aspect using WS-BPEL grammar. It means that the meta-model of aspect component has to be

integrated with the meta-model of WS-BPEL to support the weaving mechanism. Therefore

we add features of aspect component such as “Aspect”, “PointCut”, and “Advice” to the

meta-model of WS-BPEL with the purpose of estimating the response time for composite

service.

Fig. 2. Our Performance Testing Approach

3.1 Relationship of Aspect and WS-BPEL

To indentify aspect elements required for the extension of WS-BPEL, we first examined

relationships between the features of aspect and WS-BPEL meta-model. The meta-model of

aspect component is shown in Fig. 3. An aspect modularly represents a concern that crosscuts

multiple classes or features. As shown in Fig. 3, the aspect consists of pointcuts and advice.

The pointcut expresses join points, which is a well-defined point to combine the aspect with

the execution of a program. The pointcut expression is a kind of expression statement that

selects a set of join points and specifies which join points will be selected. The advice

performs the specified codes which implement crosscutting concerns whenever a join point

selected by the pointcut expression is reached during execution. The advice type can

determine the specific time point when the advice is executed.

Fig. 3. Meta-model of Aspect

The informaion of WS-BPEL meta-model is referred in WS-BPEL standard [3]. The

1846 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

relationships of aspect and WS-BPEL in meta-model level are summarized in Table 1.

Table 1. Relationship between Aspect and WS-BPEL Meta-model

Aspect meta-model WS-BPEL meta-model Relationship

Aspect ActivityContainer Packaging behavioral logic or execution flow

PointCut - -

Advice ExtensionActivity Representing additional behavior

AdviceType - -

JoinPoint Invoke Invoke is regarded as join point in process

PointCutExpression Expression Expression can specify pointcuts

In Table 1, the ActivityContainer of WS-BPEL meta-model can represent packaging

behavioral logics or execution flows like the aspect, and the use of the ExtensionActivity is

similar to the role of advice. The Invoke element of WS-BPEL can be regarded as the

JoinPoint during a process execution. So the position of the Invoke can be specified using the

PoinCutExpression, which is similar to the Expression element of WS-BPEL. The Expression

can be used to combine the PointCuts that select the Invoke because it provides the several

operators of XPath [24] such as union operator and intersect operator. In this manner, we can

identify the elements of aspect required to WS-BPEL extension. For these identified elements,

we perform their extensions as the following section.

3.2 Extending with the Aspect

The class “ActivityContainer” in WS-BPEL meta-model is a basic element to package the

activities within the WS-BPEL process for web service composition, and our aspect

component can also package the activities to perform the performance testing. Thus we define

the aspect component as a subclass of the class “ActivityContainer”. This definition can be

formalized as the following First Order Logic (FOL) [25] predicate:

)()(. xntainerActivityCoxAspectx  (1)

where x is an instance of a class, Aspect and ntainerActivityCo of the predicate (1) are the

class of “Aspect” and “ActivityContainer” from their meta-model, respectively. Note that all

properties of Aspect class must include all one of ntainerActivityCo class.

The class “Aspect” has aggregation relationships with the class “PartnerLink” to represent

the access information of participant service at the interface level, and with the class

“Variable” to define the input or output data of the service. The aggregation relationship of the

class “PartnerLink” can be expressed in FOL as follows:

)()(),(., ykPartnerLinxAspectyxkspartnerLinyx  (2)

where the first argument)(xAspect of the predicate (2) is the containing class and

)(ykPartnerLin is contained class.

)1)},(|{#0()(.  yxkspartnerLinyxkPartnerLinx (3)

)}),(|{#1()(. yxkspartnerLinxyAspecty  (4)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1847

where these predicates express cardinality restrictions in the aggregation relationship. The

predicate (3) and (4) Formalize the multiplicity [0..] and [1..1], respectively.

Similarly, the aggregation relationship of the class “Variable” has to satisfy the following

predicates:

)()(),(var., yVariablexAspectyxiablesyx  (5)

)1)},(var|{#0()(.  yxiablesyxVariablex (6)

)}),(var|{#1()(. yxiablesxyAspecty  (7)

The extension of aspect feature in WS-BPEL meta-model by these predicates is shown in

Fig. 4. The class “Aspect” has the attributes of “type” defining a kind of services, and

“PointCutExpressionLanguage” defining pointcuts for measuring the response time of

services. The specification of this extension in a WS-BPEL process is shown in the right side

of Fig. 4.

Fig. 4. Extension of WS-BPEL with Aspect

3.3 Extending with the PointCut

The “PointCut” element uses to select the target services for performance testing. Aspect

component can have several “PointCut” elements and their designators. Thus these elements

must be related with the class “Aspect” in the meta-model. The definition for extending with

the “PointCut” element is the following predicates:

)(int)(),(int., yCutPoxAspectyxCutspoyx  (8)

)1)},(int|{#1()(int.  yxCutspoyxCutPox (9)

)}),(int|{#1()(. yxCutspoxyAspecty  (10)

where a binary relation between class “Aspect” and class “PointCut”, denoting a part-whole

relationship, is expressed in (8) and the multiplicity of the relation is predicated in (9) and (10).

)()(int. xExpressionxionCutExpressPox  (11)

where each attributes or operations of the class “Expression” are inherited by the class

“PointCutExpression” of the aspect meta-model.

1848 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

Fig. 5 shows the extension for the “PointCut” element. The attribute

“PointCutExpressionLanguage” of the class “PointCut” defines the expression to describe the

pointcut designator in aspect-oriented approach.

Fig. 5. Extension of WS-BPEL with PointCut

3.4 Extending with the Advice

The “Advice” element uses to call the service defined in the class “PatnerLink”. In our testing

approach, the advice calls the timer service. In the WS-BPEL specification, the class

“ExtensionActivity” can be used to include the additional activities in WS-BPEL process.

Thus the class “Advice” is defined as a subclass which is inheriting its properties from the

class “ExtensionActivity”. And several “Advice” classes can be aggregated with the class

“Aspect”. The extension of the advice is captured by means of the following FOL predicates:

)()(),(., yAdvicexAspectyxadviceyx  (12)

)1)},(|{#1()(.  yxadviceyxAdvicex (13)

)}),(|{#1()(. yxadvicexyAspecty  (14)

)()(. xctivityExtensionAxAdvicex  (15)

The extension of WS-BPEL meta-model for the above predicates is represented in Fig. 6.

Fig. 6. Extension of WS-BPEL with Advice

Each advice executes the service according to the “Advice type” – either “Before” or

“After.” It means that the function “StartTimer()” or “StopTimer()” of timer service begins its

operation before or after the execution of composite service. The extended meta-model of

WS-BPEL which consolidate the all features of the aspect component, is depicted in Fig. 7.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1849

Fig. 7. Extended WS-BPEL Meta-model

1850 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

4. Performance Testing

When a WS-BPEL specification for the testing is given, our proposed technique for

performance testing is performed in following steps.

(1) Develop timer service and its WSDL specification. As the participant service of WS-BPEL

process, the timer service measures the response time of composite service.

(2) Specify an aspect component for the invocation of the timer service. The aspect component

describes XML-based statements similar to existing WS-BPEL to invoke the operation of

the timer service.

(3) Weave the aspect component into WS-BPEL specification. According to the weaving

mechanism of aspect-oriented concept, the aspect and WS-BPEL specification can be

integrated by the join point of the aspect component. The integrated specification is a

testable WS-BPEL specification that can test the performance of composite service.

(4) Test the performance of composite service. The results of performance testing are aquired

through the execution of the testable WS-BPEL specification.

4.1 Develop Timer Service and WSDL Spec.

The component “Timer Service” measures the elapsed time for service execution. To record

the elapsed time, a variable of list construct must be defined. The following is the skeleton

code of the timer controller developed for the timer service.

Component TimerController(int Svc_id, int xy) {

 Private int xy;

 Public List time;

 Public int SetTimer();

 Public void StartTimer();

Public void StopTimer();

 Public void SaveTime();

 Public void Timeout();

}

The WSDL specification of the timer controller is depicted in Fig. 8.

Fig. 8. WSDL Specification of Timer Service

4.2 Develop the Aspect Component

We should develop the aspect component which can invoke a timer service to test the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1851

performance of composite service. The component is specified using the extened WS-BPEL.

The following steps are required to develop the component.

(1) We first define the timer service as a participant service using the <partnerLink> element.

(2) We identify the join points for the target service within the WS-BPEL specification. These

join points can correspond to the basic activities such as receive, invoke, and reply within

the WS-BPEL specification.

(3) The identified joint points are specified as <pointcut> elements in the component. The

property “operation” of the <pointcut> element assigns a location of the target service to

test the performance.

(4) To invoke the timer service, the invocation statements are defined using the <advice>

element. The type “before” calls the operation “StartTimer” of the timer service before the

execution of target service. And the type “after” calls the operation “StopTimer” after the

service execution.

The developed aspect component is shown in Fig. 9. The property “type” of the aspect

element is to represent whether the target service is composite or single.

Fig. 9. Aspect Component Specification for Performance Testing

4.3 Weave the Aspect with WS-BPEL

Fig. 10 shows the weaving process between aspect component specification and WS-BPEL

process specification. The specification of WS-BPEL process and aspect component are

parsed with XML parser. After the parsing is finished, the corresponding elements between

two parsed results are identified with comparing of the values of the elements. With these

corresponding relationships, the weaving engine proceeds their weaving to generate a testable

WS-BPEL specification using the extended WS-BPEL. The woven specification will contain

both the XML fragments for service composition and for performance testing.

1852 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

Fig. 10. Weaving Process of WS-BPEL and Aspect

4.4 Testing the Performance

In order to perform the test, the test driver is required to handle the client’s request. At first, the

test driver runs in the client’s machine, and generates a message for client’s service request,

and then sends the message to WS-BPEL engine of SOA framework. The testable WS-BPEL

specification is processed to test the service performance by WS- BPEL engine, as shown in

Fig. 11.

Fig. 11. Procedure of Performance Testing Execution

One of the execution results of the testable WS-BPEL specification is a list of the execution

times measured for each single service or several services. Another results are responses for

the service request of the client. The collected results will be stored in a file for all service

invocation specified in WS-BPEL process. Using the results, we can calculate the

performance of composite service, CSP by the reponse time in client’s view as follow:


 


n

i

k

j

ijOTCSP
1 1

 (16)

where i is a participant service and j is an invoked operation within a service. ijOT is a

response time for operation j of service i . Note that the total response time of services

participating at service composition of the WS-BPEL means the performance of the composite

service.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1853

5. Implementation and Experiment

As a proof-of-concept, we conduct the implementation and experiment of our approach for

on-line transaction processing system.

5.1 Tool Implementation

To implement our proposed technique for the performance testing of composite service, we

need to develop an aspect descripter which can generate the aspect component to measure the

execution time of a service, and develop a weaving engine that can generate a testable

WS-BPEL specification. It also needs a WS-BPEL engine to execute the testable WS-BPEL

specification and to get the performance result from the execution. Therefore we implemented

a performance test tool using the Netbeans IDE 6.7 [26] which provides main functionalities

for SOA, such as WS-BPEL engine, WS-BPEL designer, and web service developer. The

screen shot of our tool implementation is shown in Fig. 12.

Fig. 12. Screen Shot of Aspect Descripter

From Fig. 12, the aspect descripter has three parts of WS-BPEL displayer, aspect

component editer and weaved result displayer. The weaved result is generated by the weaving

engine which is implemented within the aspect descripter.

5.2 Experiment Environment

1854 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

The experiment is performed with travel reservation system (TRS) [27], as shown in Fig. 13.

TRS, which provides total service for a travel, consists of flight reservation service, hotel

reservation service and car rental service.

Fig. 13. Experimental construction for TRS

If a client sends a service request to the WS-BPEL engine, the three services are composited

according to the WS-BPEL process to provide the integrated travel service. The specification

and execution of WS-BPEL for the TRS are achieved by the Netbeans IDE 6.7, as shown in

Fig. 14.

Fig. 14. WS-BPEL Specification using Netbeans IDE 6.7

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1855

The system configuration for our experimental environment is summarized in Table 2. The

TRS that consisted of three services are installed at service provider and the Netbeans IDE is

built at SOA server.
Table 2. Hardware Configuration for Experiment

 Service Client Service Provider SOA Server

Processor
Intel Pentium 4

(3.0GHz)

Intel Pentium 4

(3.0GHz)

Intel Quad Core

(2.5GHz)

Memory 1GB 2GB 4GB

Java Java 2 SE Java 2 EE Java 2 EE

Bandwidth 100Mbps 100Mbps 100Mbps

SOAP Engine Apache Axis 2 Apache Axis 2 Apache Axis 2

5.3 Experiment 1: Performance Test of the TRS

The experiment in this section conducts the performance test of the TRS. The experimental

results is captured after the performance test of 10 times for each service as illustrated in Fig.

15. From Fig. 15, the totals of average elapsed times for the composite three services are

1674.8ms. The response time of the car rental service takes much more than the time of other

services. This results show that the car rental service is inefficient in the view of performance.

The inefficiency may be caused by the high complexity of service implementation. The

fluctuation in the response times of car rental service occurred from the service execution

status. High response time of car rental service was caused by normal booking which meets the

customer requirements, and low response time was caused by normal execution but booking

was not succeeded. Thus the car rental service needs to be substituted to a

performance-efficient service with identical functions.

Fig. 15. Performance Test Result for TRS

5.4 Experiment 2: Performance Test for Variation of the TRS

As the worst performance of the car rental service in the experiment 1, we implemented a TBS

(Travel Booking System) which is the variation of TRS, and then performed a testing with the

TBS. The TBS shared the flight reservation(airline) service and hotel reservation service of the

TRS, and its car rental service is altered with a vehicle rental service [28] that is another

service application with identical functionalities of the car rental service. Fig. 16 shows the

results of the performance test for the TBS. From Fig. 16, the response times of airline service

increase in some degree than the time of the experiment 1. This phenomenon can be guessed

from that multiple service requests are occurred.

1856 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

Fig. 16. Performance Test Result for TBS

The totals of average elapsed times for the TBS are 1058.0ms when the experiments were

performed in similar environments of the TRS. The response time of the vehicle service,

shown in Fig. 16, takes less than the time of car rental service in the TRS. So, we can

composite the travel services in the same manner with TBS for performance-efficient service.

5.5 Experiment 3: Performance Test of the Service Load by Requests

In this experiment we conducted the performance testing with consideration of the service

load by client requests, and compared the performances between the TRS and the TBS by the

increment of the load. The load is increased by augmenting the number of clients (from 1 to 30

clients). Each client sends a request to a service and as soon as it gets the reply, it submits a

new request again. The test results for the loads of the TRS and TBS is summarized in Table.

3. The response time is measured by the test of the composite serivce for one request. From

Table 3, we can confirm that the performance of the TBS is much better than the TRS as

increasing the requests of the compsite service. The responset time for two composite services

is graphically represented in Fig. 17. We can still show that the TBS is performance-efficient

service for the increment of the service load.

Table 3. Test Result by Service Load Increment

Load (# of clients)
Response Time of

TRS (ms)

Response Time of

TBS (ms)
Difference (ms)

1 1710.32 1046.19 664.13

5 1820.12 1145.36 674.76

10 1910.95 1330.29 580.66

15 2120.96 1490.29 630.67

20 2290.56 1625.16 665.40

25 2510.78 1880.89 629.89

30 2820.92 1998.53 822.39

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1857

Fig. 17. Performance Test Result for Service Load

5.6 Experiment 4: Performance Test of Parallel Service Invocation

The flight reservation service and vehicle rental service of the TBS can be invoked separately,

regardless of invocation sequence because those do not have any effect each other. In this

experiment we perform the performance testing for the parallel invocation of the two services.

The two services are invoked at the same time and then the hotel reservation service is invoked.

The response time of the parallel invocation is estimated at a point that is received the replies

of two service. Fig. 18 shows the test result of this experiment. As one expects the

performance improvement of parallel execution, the composite service integrated with the

three services yields the good response time.

Fig. 18. Performance Test Result for Parallel Service Invocation

5.7 Discussions: Results from the Experiments

As noted in the previous sections, we performed various experiments to test the performance

of the travel reservation service. In the experiment 1 and 2, we can see that the composite

service can have a low performance due to the car rental service with a bad performance and

the service needs to be replaced to other identical service, the vehicle rental service, with a

good performance. So the results of the experiments can be used to select a service which can

improve the performance of composite service.

1858 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

In the experiment 3, the critical response time defined in Service-Level Agreement (SLA)

for the TRS and TBS is 2000ms. The TRS violates the response time of SLA from the load of

15 clients. The TBS always satisfies the response time about the load from 1 client to 30 client.

As a result, for selecting a participant service in a WS-BPEL process, we should consider

whether the response time of SLA is satisfied by the increment of the service loads.

In the result of the experiment 4, we can show that the performance of the composite service

was improved by the parallel invocation of WS-BPEL process. In the WS-BPEL process, the

two services are invoked in parallel, as shown in Fig. 19.

Fig. 19. Parallel Service Invocation of TBS

The parallel invocation bring out the the performance improvement of compsite service, but

it can waste the computing resource for parallel processing when the processing does not

finished by the failure of service invocation. From Fig. 19, even if the invocation of the flight

reservation service is fail, the vehicle reservation service can be still executing. The result of

the processing is invalid. That is, the vehicle rental service is no longer applicable. Therefore

the parallel invocation can cause resource waste due to unnecessary works.

Results of these tests can be used to optimize WS-BPEL processes and SLA, and to discover

potential performance bottlenecks. In our experiments, the timer service can cause the

overhead in the response time measurement. However, the overhead can be ignored because

the timer service is processed in the local host which handles the composition of services and

occurs in very low delay (less than 4ms).

6. Conclusion

The performance issue of real-time transaction system is one of major concerns in software

development based on SOA approach. The existing researches about WS-BPEL have been

focused on the functional or structural features of a service process. Although WS-BPEL

specifies the control logic of behavioral process for service composition, it does not support

the performance issue in its specification.

Therefore, in this paper, we extend the meta-model of WS-BPEL using the aspect-oriented

paradigm for considering the performance property in WS-BPEL process. And also we

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1859

proposed the performance test procedure to explain how to develop the aspect-based

WS-BPEL spec. and perform the performance testing. To support the test procedure, we

implemented the aspect descriptor and weaving engine to generate a testable WS-BPEL

specification. Finally, we conducted experiments on the TRS, on-line travel reservation

system, to evaluate the applicability of our approach. Our technique can apply to choose an

adequate service among various candidate service components with considering the

performance. One of further works is applying our technique to mobile smart-phone

applications, and developing the performance testing framework to support service

composition among smart devices.

References

[1] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and Design,” Prentice-Hall, 2005.

[2] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, “Service-Oriented Computing: State of the

Art and Research Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007. Article

(CrossRef Link)

[3] OASIS Standard, “WS-BPEL Ver. 2.0,” Apr. 2007.

[4] C.H. Liu, S.L. Chen, X.Y. Li, “A WS-BPEL Based Structural Testing Approach for Web Service

Compositions,” in Proc. of IEEE Int. Symp. on Service-Oriented System Engineering, pp. 135-141,

Dec. 2008. Article (CrossRef Link)

[5] E. Zeeb, A. Bobek, H. Bohn, S. Pruter, A. Pohl, H. Krumm, I. Luck, F. Golatowski, D.

Timmermann, “WS4D: SOA-Toolkits making embedded systems ready for Web Services,” in

Proc. of Int. Workshop on Open Source Software and Product Lines, pp. 33-42, 2007. Article

(CrossRef Link)

[6] Y. Kakumoto, H. Terada, S. Sekino, N. Komoda, “Component Oriented Software Framework for

Train Car Systems,” in Proc. of Int. Conf. on Computational Intelligence for Modelling, Control

and Automation, pp. 587-593, Nov. 2005. Article (CrossRef Link)

[7] N. Komoda, “Service Oriented Architecture (SOA) in Industrial Systems,” in Proc. of IEEE int.

Conf. on Industrial Informatics, pp. 1-5, Aug. 2006. Article (CrossRef Link)

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier, J. Irwin,

“Aspect-Oriented Programming,” in Proc. of European Conf. on Object-Oriented Programming,

pp. 220-242, 1997. Article (CrossRef Link)

[9] W3C, “WSDL Ver. 2.0,” TR-REC-wsdl20-primer-20070626, 2007.

[10] J. Offutt, W. Xu, “Generating Test Cases for Web Services Using Data Perturbation,” ACM

SIGSOFT Software Engineering Notes, vol. 29, no. 5, pp. 1-10, Sep. 2004. Article (CrossRef Link)

[11] X. Bai, W. Dong, W.T. Tsai, Y. Chen, “WSDL-Based Automatic Test Case Generation for Web

Services Testing,” in Proc. of IEEE Int. Workshop on Service-Oriented System Engineering, pp.

207-213, October, 2005. Article (CrossRef Link)

[12] W.T. Tsai, R. Paul, Y. Wang, C. Fan, D. Wang, “Extending WSDL to Facilitate Web Services

Testing,” in Proc. of IEEE Int. Symp. on High Assurance Systems Engineering, pp. 171-172, 2002.

Article (CrossRef Link)

[13] W.T. Tsai, R. Paul, L. Yu, A. Saimi, Z. Cao, “Scenario-Based Web Service Testing with

Distributed Agents,” IEICE Transaction on Information and System, vol. E86-D, no. 10, pp.

2130-2144, 2003.

[14] H. Mei, L. Zhang, “A framework for testing Web services and its supporting tool,” in Proc. of

IEEE Int. Workshop on Service-Oriented System Engineering, pp. 207-214, 2005. Article

(CrossRef Link)

[15] T. Lertphumpanya, T. Senivongse, “A basis path testing framework for WS-BPEL composite

services,” in Proc. of Int. Conf. on Software Engineering, Parallel and Distributed Systems, pp.

107-112, 2008. Article (CrossRef Link)

[16] Z. Li, W. Sun, Z. B. Jiang and X. Zhang, “BPEL4WS Unit Testing: Framework and

Implementation,” in Proc. of IEEE Int. Conf. on Web Services, pp. 103-110, July 2005. Article

http://doi.ieeecomputersociety.org/10.1109/MC.2007.400
http://doi.ieeecomputersociety.org/10.1109/MC.2007.400
http://dx.doi.org/doi:10.1109/SOSE.2008.30
http://dx.doi.org/doi:10.1.1.67.8388
http://dx.doi.org/doi:10.1.1.67.8388
http://dx.doi.org/doi:10.1109/CIMCA.2005.1631532
http://dx.doi.org/doi:10.1109/INDIN.2006.275681
http://dx.doi.org/doi:10.1145/503209.503260
http://dx.doi.org/doi:10.1145/1022494.1022529
http://dx.doi.org/doi:10.1109/SOSE.2005.43
http://dx.doi.org/doi:10.1109/HASE.2002.1173119
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/SOSE.2005.1
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/SOSE.2005.1
http://dl.acm.org/citation.cfm?id=1416502.1416524
http://dx.doi.org/doi:10.1109/ICWS.2005.31

1860 Kim et al.: Performance Testing of Composite Web-Service with Aspect-Based WS-BPEL Extension

(CrossRef Link)

[17] Y. Yuan, Z. Li, W. Sun, “A Graph-Search Based Approach to BPEL4WS Test Generation,” in

Proc. of IEEE Int. Conf. on Software Engineering Advances, pp. 14-14, Oct. 2006. Article

(CrossRef Link)

[18] H. Cao, S. Ying, D. Du, “Towards Model-based Verification of BPEL with Model Checking,” in

Proc. of 6th IEEE Int. Conf. on Computer and Information Technology, pp. 190-190, Sep. 2006.

Article (CrossRef Link)

[19] OASIS Standard, “Test Assertions Guidelines Version 1.0,” June 2011.

[20] OASIS Standard, “XTemp: XML Testing and Event-driven Monitoring of Processes Version 1.0,”

Mar. 2011.

[21] L. Peng, M. Koh, J. Song, S. See, “Performance Monitoring for Distributed Service Oriented Grid

Architecture,” Lecture Note in Computer Science, vol. 3719, pp. 351-356, 2005. Article (CrossRef

Link).

[22] A. Bertolino, G.D. Angelis, A.D. Marco, P. Inverardi, A. Sabetta, M. Tivoli, “A Framework for

Analyzing and Testing the Performance of Software Services,” Communications in Computer and

Information Science, vol. 17, no. 6, pp. 206-220, 2009. Article (CrossRef Link).

[23] S. Chandrasekaran, J.A. Miller, G.S. Silver, B. Arpinar, A.P. Sheth, “Performance Analysis and

Simulation of Composite Web Services,” Journal of Electronic Markets, vol. 13, no. 2, pp.

120-132, Jan. 2009.Article (CrossRef Link).

[24] J. Clark, “XML path language (XPath) 2.0,” December, 2010.

[25] D. Berardi, D. Calvanese, G.D. Giacomo, “Reasoning on UML class diagrams,” Artificial

Intelligence, vol. 168, pp. 70-118, July 2005. Article (CrossRef Link).

[26] Oracle Corporation, “Netbeans IDE 6.7,” 2010.

[27] A. Koval, “Understanding the Travel Reservation Service,” July, 2010.

[28] IBM, “Web Sphere Studio Information Sample,” 2010.

Jong-Phil Kim is a Ph.D. candidate in the department of computer science at

Chungbuk National University, Cheongju, Korea. He received the B.S. and M.S.

degrees in computer science from Chungbuk National University, in 2006 and 2008,

respectively. His research interests are aspect-oriented programming, service-oriented

architecture, embedded software modeling and software testing.

Dong-Hyuk Sung is received the B.S. and M.S. degrees in the department of

computer science from Chungbuk National University, Cheongju, Korea, in 2008 and

2011, respectively. His research interests are service-oriented architecture, embedded

software modeling and software testing.

http://dx.doi.org/doi:10.1109/ICSEA.2006.261270
http://dx.doi.org/doi:10.1109/ICSEA.2006.261270
http://dx.doi.org/doi:10.1109/CIT.2006.185
http://dx.doi.org/doi:10.1007/11564621_40
http://dx.doi.org/doi:10.1007/11564621_40
http://dx.doi.org/doi:10.1007/978-3-540-88479-8_15
http://dx.doi.org/doi:10.1080/1019678032000067217
http://dx.doi.org/doi:10.1016/j.artint.2005.05.003

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 10, October 2011 1861

Jang-Eui Hong is an associate professor of Computer Engineering at the school of

Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea.

He received his Ph.D. in computer science from KAIST, Korea, in 2001. He served as a

research member at ADD (Agency for Defense Development) from 2001 to 2004. His

research interests include software quality, aspect-oriented programming, embedded

software modeling, low-energy software model, and software process improvement.

