An approach to improving the Lindley estimator

  • Park, Tae-Ryoung (Department of Computer Engineering, Seokyeong University) ;
  • Baek, Hoh-Yoo (Division of Mathematics and Informational Statistics, Wonkwang University)
  • Received : 2011.09.29
  • Accepted : 2011.11.06
  • Published : 2011.12.01

Abstract

Consider a p-variate ($p{\geq}4$) normal distribution with mean ${\theta}$ and identity covariance matrix. Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the Lindley estimator under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or ${\Sigma}={\sigma}^2I$ for an unknown scalar ${\sigma}^2$.

Keywords

References

  1. Baranchick, A. (1964). Multiple regression and estimation of the mean of a multivariate normal distribution, Technical Report. 51, Department of Statistics, Stanford University.
  2. Berger, J. O. (1976). Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss. Annals of Statistics, 4, 223-226. https://doi.org/10.1214/aos/1176343356
  3. Bock, M. E. (1975). Minimax estimation of the mean of a multivariate normal distribution. Annals of Statistics, 3, 209-218. https://doi.org/10.1214/aos/1176343009
  4. Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators, Annals of Statistics, 2, 21-38. https://doi.org/10.1214/aos/1176342610
  5. Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Annals of Mathematical Statistics, 39, 29-48. https://doi.org/10.1214/aoms/1177698503
  6. Brown, L. D. and Hwang, J. T. (1982), A unified admissibility proof. In Statistical Decision Theory and Related Topics III, edited by S. S. Gupta and J. Berger, Academic Press, New York.
  7. James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-379.
  8. Kim, B. H. and Baek, H. Y. (2005). A sequence of improvement over the Lindley type estimator with the cases of unknown covariance matrices. The Korean Communications in Statistics, 12, 463-472. https://doi.org/10.5351/CKSS.2005.12.2.463
  9. Kim, B. H., Koh, T. W. and Baek, H. Y. (1995). Estimator with nondecreasing risk in a multivariate normal distribution. Journal of the Korean Statistical Society, 24, 257-266.
  10. Kubokawa, T. (1991). An approach to improving the James-Stein estimator. Journal of Multivariate Analysis, 36, 121-126. https://doi.org/10.1016/0047-259X(91)90096-K
  11. Lin, P. E. and Tsai, H. L. (1973). Generalized Bayes minimax estimators of the multivariate normal mean with unknown covariance matrix. Annals of Statistics, 1, 142-145. https://doi.org/10.1214/aos/1193342390
  12. Lindley, D. V. (1962). Discussion of paper by C. Stein. Journal of Royal Statistical Society, 24, 265-296.
  13. Strawderman, W. E. (1971). Proper Bayes minimax estimator for the mean of multivariate normal mean. Annals of Mathematical Statistics, 42, 385-388. https://doi.org/10.1214/aoms/1177693528
  14. Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1, 197-206.