Endovascular Treatment Using Graft-Stent for Pseudoaneurysm of the Cavernous Internal Carotid Artery

Jun Kyeung Ko, M.D., Tae Hong Lee, M.D., Jae Il Lee, M.D., Chang Hwa Choi, M.D.
Departments of Neurosurgery, Diagnostic Radiology, School of Medicine, Pusan National University, Busan, Korea

A 57-year-old man presented with a 2-day history of left oculomotor palsy. Digital subtraction angiography revealed a pseudoaneurysm of the left cavernous internal carotid artery (ICA) measuring 37×32 mm. The pseudoaneurysm was treated with a balloon expandable graft-stent to occlude the aneurysmal neck and preserve the parent artery. A post-procedure angiogram confirmed normal patency of the ICA and complete sealing of the aneurysmal neck with no opacification of the sac. After the procedure, the oculomotor palsy improved gradually, and had completely resolved 3 months after the procedure. A graft-stent can be an effective treatment for a pseudoaneurysm of the cavernous ICA with preservation of the parent artery.

Key Words : Internal carotid artery · Pseudoaneurysm · Graft-stent · Oculomotor palsy.
procedure; an additional 1,000 IU bolus of heparin was administered every hour to maintain an ACT >250 seconds throughout the procedure. A 6F guiding catheter (Envoy; Cordis Endovascular Corporation, Miami, FL, USA) was navigated into the cavernous ICA segment, and pre-procedural angiograms were obtained in orthogonal planes. The mean size of involved ICA was 3.6 mm in diameter. A 300-cm long, 0.014-in microwire (Transend 14; Target/Boston Scientific, Natick, MA, USA) was navigated into the third segment of the MCA (M3). A 4/19 mm-sized graft-stent (GraftMaster; Abbott Vascular Devices, Amersfoort, The Netherlands) was then advanced over the microwire and positioned across the neck of the pseudoaneurysm by using roadmap imaging and external stent markings, and the position was angiographically-confirmed (Fig. 2C). We then deployed the stent using the roadmap image, inflating slowly up to 12 atm, at which the graft-stent diameter increased to 4.21 mm (Fig. 2D). Following stent deployment, the post-procedure angiogram confirmed the normal patency of the ICA and perfect sealing of the aneurysm neck with no opacification of the sac (Fig. 2E).

Pre-medication was not given, as the patient underwent emergency treatment. However, after the procedure, the patient received 100 mg aspirin and 75 mg clopidogrel (Plavix; Sanofi-Synthelabo, Seoul, Korea) daily for one year according to our protocol for graft-stent placement in cerebral vessels. After the procedure, the oculomotor palsy improved gradually and had completely resolved 3 months after the procedure.

A follow-up angiography 10 months post-operatively demonstrated stable occlusion of the pseudoaneurysm and no alteration in the patency of the ICA (Fig. 2F).

DISCUSSION

A pseudoaneurysm of the intracranial ICA is a rare complication after a blunt or penetrating traumatic injury, previous dissection of the vessel, inflammation, or previous surgery. Theoretically, patients with pseudoaneurysms of the cranial ICA are at risk for distal thromboembolism, continued enlargement with vessel occlusion, and rebleeding with intracranial hemorrhage.

Historically, such pseudoaneurysms have been managed with anticoagulants, surgical repair, coils, bare stent placement with or without coil embolization, and coronary covered stents. Although recent reports support an improvement in outcome for patients managed with surgical reconstruction compared with observation or anticoagulation therapy alone, surgical repair of carotid pseudoaneurysms is often technically demanding and associated with a high rate of morbidity and mortality. An endovascular approach to these pseudoaneurysms limits the risk of operative damage to surrounding structures and the potential for substantial blood loss.

Endovascular treatment of a pseudoaneurysm in the ICA includes sacrifice or preservation of the carotid artery. If a BTO is well-tolerated, trapping or parent artery occlusion is an option. However, 5-22% of patients passing the BTO develop ischemic complications, including cerebral infarcts. Therefore, preserving the patency of the carotid artery as far as possible is a
more desirable goal. Moreover, sacrifice of the ICA was not an option in our case because of poor collateral circulation. Coil embolization and stent-assisted embolization of ICA pseudoaneurysms have been used for preservation of carotid artery patency. However, the lack of a true wall in these pseudoaneurysms and the absence of normal healthy tissue within the sella may result in extrusion of the coil and enlargement of the pseudoaneurysm\(^4,7,11,19\). Graft-stents have been used more recently to overcome these problems in treating ICA pseudoaneurysms\(^2,5,13-15,18\).

Several issues have been raised regarding the therapy of ICA pseudoaneurysms, including anticoagulation treatment, time of stenting, potential for stent thrombosis, restenosis by intimal hyperplasia, type of stent used, and relative contraindications to stent implantation\(^3\). Ultimately, we decided to utilize a balloon expandable graft-stent to occlude the aneurysmal neck and preserve the parent artery. Although the graft-stent was deployed successfully with no procedure-related complications, in our case a significant limitation to the use of the stents intracranially is their large profile and inflexibility, which makes it difficult to negotiate the tortuous vascular segments at the skull base. Also, none of these graft-stents have been specifically designed for intracranial use. Although long-term follow-up and larger samples are required to evaluate efficacy, the usefulness and versatility of placement of a graft-stent in the rapid treatment of pseudoaneurysms of the cranial ICA was demonstrated in this case. In particular, graft-stents have the advantage of parent artery preservation in cases of contralateral ICA occlusion or with a significant limitation to the use of the stents intracranially. Moreover, graft-stents that are designed and developed for intracranial vessels are necessary before their use can be recommended on a broader basis\(^3\).

CONCLUSION

We have presented a case successfully treated by application of graft-stent for a pseudoaneurysm of the cavernous ICA to ensure normal patency of the ICA. However, greater experience with the described technique would allow the role and long-term patency of graft-stent placement in the treatment of intracranial pseudoaneurysms to be better defined.

• **Acknowledgements**

This work was supported by clinical research grant from Pusan National University Hospital 2010.

References