DOI QR코드

DOI QR Code

Characterization of Thermal Properties for Glass Beads - Rubber Mixture

글라스 비즈 - 고무 분말 혼합물의 열전달 특성 연구

  • Lee, Jung-Hwoon (Dept. of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Yun, Tae-Sup (Dept. of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Evans, T. Matthew (Dept. of Civil, Construction and Environmental Engineering, North Carolina State Univ.)
  • 이정훈 (연세대학교 토목환경공학과) ;
  • 윤태섭 (연세대학교 토목환경공학과) ;
  • 매튜 에반스 (노스캐롤라이나대학교 토목환경공학과)
  • Received : 2011.04.29
  • Accepted : 2011.11.17
  • Published : 2011.11.30

Abstract

This study presents the thermal behaviors of glass beads-rubber mixtures depending on the volumetric fraction of each constituent and relative size between them. The transient plane source method is used to measure the effective thermal conductivity of mixtures. The discrete element method (DEM) and the thermal network model are integrated to investigate the particle-scale mechanism of heat transfer in granular packings. Results show that 1) the effective thermal conductivity decreases as the rubber fraction increases, and 2) the relative size between two solid particles dominates the spatial configuration of inter-particle contact condition that in tum determines the majority of heat propagation path through particle contacts. For the mixtures whose volumetric fraction of rubber is identical, the less conductive materials (e.g., rubber particles) with a large size facilitate heat transfer in granular materials. The experimental results and particle-scale observation highlight that the thermal conduction behavior is dominated not only by the volumetric fraction but also the spatial configuration of each constituent.

본 연구는 글라스 비드와 고무 혼합재의 부피비와 상대적인 크기 비에 따른 열적 거동에 관해 다루고 있다. 혼합 물질의 열전도도를 측정하기 위하여 비정상면열원법이 사용되었다. 개별요소법과 열 네트워크 모델을 결합하여 입상체 모사 시료에서 입자 단위의 열전달 매커니즘을 분석하였다. 실험 및 해석의 결과는 다음과 같다. 유효 열전도도는 고무의 부피비가 증가할수록 감소한다. 두 물질의 상대적인 크기는 열 전파경로의 대부분을 결정하는 입자간 접촉상태의 공간적 구성을 지배한다. 같은 부피비를 갖는 혼합물질 중에서, 열이 잘 흐르지 않는 물질(여기에서는 고무)의 입자 크기가 큰 경우 열전달이 더 원활하게 이루어진다. 이상의 실험결과와 입자 단위의 관찰은 물질의 열적 거동이 부피비 뿐 아니라 구성 성분의 공간적인 구성에도 영향을 받음을 보여준다.

Keywords

References

  1. 김영진 (1998), "폐타이어의 건설재료 재활용", 대한토목학회지,Vol.46, pp.32-35
  2. 이창호, 윤형구, 김래현, 이우진, 이종섭 (2008), "입자크기비에따른 강-연성 혼합재의 공학적 특성", 한국지반공학회논문집, Vol.24, pp.125-135
  3. ASTM D5334-08 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure
  4. Ahmed, 1. and Lovell, C. W. (1993), "Rubber Soils as Light Weight Geomaterials", Transportation research record 1422. pp.61-70.
  5. Anh, T. Ngo and Valdes, Julio R. (2007), "Creep of Sand-Rubber Mixtures", Journal of Materials in Civil Engineering, ASCE, pp.1101-1105.
  6. Bederina, M., Marmoret, L., Mezreb, K., Khenfer M. M., Bali, A and Queneudec, M. (2005), "Effect of the Addition of Wood Shavings on Thermal Conductivity of Sand Concretes: Experimental Study and Modeling", Construction and BUilding Materials, Vol.21, pp.662-668.
  7. Benazzouk, A, Douzane, 0., Mezreb, K. Laidoudi, B. and Queneudec, M. (2008), "Thermal Conductivity of Cenlent Composites Containing Rubber Waste Particles: Experimental Study and Modeling", Construction and Building Materials, Vol.22, pp.573-579. https://doi.org/10.1016/j.conbuildmat.2006.11.011
  8. Evans, 1. M., Lee, JungHwoon, Yun, Tae Sup, and Valdes, Julio R (2011), "Thermal Conductivity in Granular Mixtures: Experimental and Numerical Studies", Proc. International Symposium on Deformation Characteristics of Geomaterials, 2011, Seoul, Korea.
  9. Garga, V. K. and O'Shaughnessy, V. (2000), "Tire-Reinforced EarthfilL Part 1: Construction of a Test Fill, Performance, and Retaining Wall Design", Can. Geotech. J., 37(1), pp.75-96 . https://doi.org/10.1139/t99-084
  10. Ghazavi, M. (2004), "Shear Strength Characteristics of Sand-Mixed with Granular Rubber", Geotechnical and Geological Engineering, 22, pp.401-416. https://doi.org/10.1023/B:GEGE.0000025035.74092.6c
  11. Gustafsson, S. E., Karawacki, E. and Khan, M. N. (1979), "Transient Hot-strip Method for Sinmltaneously Mesuring Thermal Conductivity And Thermal Diffusivity of Solids and Fluids", Journal of Physics D: Applied Physics, Vol.12, No.9, pp.1411-1421 https://doi.org/10.1088/0022-3727/12/9/003
  12. Humphrey, D. N. and Eaton, R. A (1995), "Field Performance of Tire Chips as Subgrade Insulation for Rural Roads", Proc., 6th Int Conf. on Low-Volume Roads, pp.77-86.
  13. Khedari, J., Suttisonk, B., Pratinthong, N. and Hirunlabh, Jongjit (2000), "New lightweight composite struction materials with low thermal conductivity", Cement and Concrete Composites, Vol.24, pp.65-70.
  14. Kim, H. K. and Santamarina, J. C. (2008), "Sand-Rubber Mixtures (Large Rubber Chips)", Canadian Geotechnical Journal, Can. Geotech. J. 45. pp.1457-1466 https://doi.org/10.1139/T08-070
  15. Lee, J. H., Salgado R., Bernal, A, and Lovell, C. W. (1999), "Shredded Tires and Rubber-Sand as Lightweight Backfill", J. Geotech. Geoenviron. Eng., ASCE, 125(2), pp.132-141 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  16. Pamukcu, S. and Akbulut, S. (2006), "Thermoelastic Enhancement of Damping of Sand Using Synthetic Ground Rubber", J. Geotech. Geoenviron. Eng., 132(4), pp.501-510. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(501)
  17. Youwai, S. and Bergado, D. (2003), "Strength and Deformation Characteristics of Shredded Rubber Tire-Sand Mixtures", Can. Geotech. J., 40(2), pp.254-264. https://doi.org/10.1139/t02-104
  18. Yun, T. and T. Evans (2010), "Three-dimensional random network model for thermal conductivity in particulate materials, Computers and Geotechnics.", Vol.37, pp.991-998. https://doi.org/10.1016/j.compgeo.2010.08.007