DOI QR코드

DOI QR Code

Variations in Nutrients & CO2 Uptake Rates and Photosynthetic Characteristics of Saccharina japonica from the South Coast of Korea

다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화

  • Hwang, Jae-Ran (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Shim, Jeong-Hee (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Kim, Jeong-Bae (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Kim, Sook-Yang (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Lee, Yong-Hwa (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI))
  • 황재란 (국립수산과학원 어장환경과) ;
  • 심정희 (국립수산과학원 어장환경과) ;
  • 김정배 (국립수산과학원 어장환경과) ;
  • 김숙양 (국립수산과학원 어장환경과) ;
  • 이용화 (국립수산과학원 어장환경과)
  • Received : 2011.10.07
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

To investigate the contribution of macroalgae to biogeochemical nutrients and carbon cycles, we measured the uptake rates of nutrients and $CO_2$ and characteristics of fluorescence of Saccharina japonica (Laminaria japonica Areschoug) using an incubation method in an acrylic chamber. From January to May 2011, S.japonica was sampled at Ilkwang, one of well-known macroalgae culture sites around Korea and ranged 46~288 cm long and 4.8~22.0 cm wide of whole thallus. The production rate of dissolved oxygen by S. japonica (n=25) was about $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$. The uptake rate of total dissolved inorganic carbon ($TCO_2$), calculated by total alkalinity and pH, was $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$. Mean nutrients uptake were $175.6{\pm}161.1\;nmol\;N\;g^{-1}\;FW\;h^{-1}$ and $12.7{\pm}10.1\;nmol\;P\;g^{-1}\;FW\;h^{-1}$. There were logarithmic relationships between thallus length and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (<100-150 cm) were much more efficient at nutrients and $CO_2$ uptake than old specimens > 150 cm. There was a positive linear correlation ($r^2$=9.4) existed between the dissolved oxygen production rate and the $TCO_2$ uptake rate, suggesting that these two factors may serve as good indicators of S. japonica photosynthesis. There was also positive linear relationship between maximal quantum yield ($F_v/F_m$) and production/uptake rates of dissolved oxygen, $TCO_2$ and phosphate, suggested that $F_v/F_m$ could be used as a good indicator of photosynthetic ability and $TCO_2$ consumption of macroalgae. Maximum relative electron transport rate ($rETR_{max}$) of S. japonica increased as thallus grew and was high in distal part of thallus which may be resulted from the increase of photosynthetic cell density per area. The annual $TCO_2$ uptake by S. japonica in Gijang area was estimated about $1.0\sim1.7{\times}10^3C$ ton, which was about 0.02-0.03% of carbon dioxide emission in Busan City. Thus, more research should be focused on macroalgae-based biogeochemical cycles to evaluate the roles and contributions of macroalgae to the global carbon cycle.

국내 해조류 양식종인 다시마(Saccharina japonica (Laminaria japonica Areschoug))의 영양염 및 무기탄소 흡수율과 광합성 특성을 살펴보기 위해, 부산시 기장군 일광해역 양식장에서 2011년 l월부터 5월동안 시료를 채집하여 실내 배양하였다. 배양 시료의 엽장과 엽폭 범위는 각각 46~288 cm, 4.8~22.0 cm였으며, 이들의 용존산소 평균 생산율은 $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$, 질산염과 인산염 흡수율은 각각 $175.6{\pm}161.1\;nmol\;g^{-1}\;FW\;h^{-1}$, $12.7{\pm}10.1\;nmol\;g^{-1}\;FW\;h^{-1}$ 그리고 용존무기탄소 흡수율은 $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$이었다. 다시마 엽장에 따른 이들 성분의 생산/흡수율은 로그함수 관계를 보여, 엽장 100~150 cm 이상부터는 다시마의 광합성 및 생장율이 다소 둔화되는 것으로 나타났다. 용존 산소 생산율과 질산염, 인산염, $TCO_2$ 흡수율은 각각 음의 선형관계를 보였으며, 특히 용존산소 생산율과 $TCO_2$ 흡수율은 높은 상관관계 ($r^2$=0.94)를 나타내어 서로에 대한 간접 지표가 될 수 있음을 의미한다. 다시마의 최대양지수율($F_v/F_m$)과 용존산소 및 무기탄소 생산/흡수율사이에 선형관계가 나타났으며, 양자수율이 높을수록 활발한 광합성작용으로 용존산소 생산이 활발함을 증명하였다. 광합성 형광특성 중 최대상대전자전달률은 비교적 엽체가 생장할수록 증가하였으며, 엽체의 부착부에 비해 상부 말단으로 갈수록 증가하였다. 이는 다시마가 생장할수록 광합성활성 조직 비(단위 면적당 습중량)가 증가하여 나타난 결과로 사료된다. 기장해역에서 다시마에 의한 연간 무기탄소 흡수량은 $1.0\sim1.7{\times}10^3C$ ton으로 추정되며, 이는 부산시 이산화탄소 배출량의 0.02~0.03%에 해당한다. 따라서 해조류에 의한 연안의 탄소 및 물질순환과 지구시스템에서의 역할을 파악하기 위해 추가적인 연구가 필요할 것으로 생각된다.

Keywords

Acknowledgement

Supported by : 국립수산과학원

References

  1. 강래선, 고철환, 1999. 한국 동남해안에서 다시마 (Laminaria japonica Areschoug)의 성장, 성숙, 사망률 및 생산. 한국해양학회지, 4: 237−245.
  2. 국토해양부, 2009. 2008 육상기인오염원 관리대책수립연구. pp.334.
  3. 국토해양부, 2011. 한국해양환경조사연보 2010. pp. 318.
  4. 김영대, 홍정표, 송홍인, 전창영, 김수경, 손용수, 한형균, 김동삼, 김진희, 김명래, 공용근, 김대권, 2007. 갯녹음 해역에 해중림 조성을 한 다시마의 생장과 성숙. 한국수산학회지, 40: 323−331.
  5. 김영환, 1996. 해산식물학. 한솔출판사, 서울, pp. 93−127.
  6. 농림수산식품부, 2010. 2009년 바다숲 조성 사업 최종보고서.
  7. 부산광역시, 2010. 부산광역시 기후변화대응 종합계획. pp. 77.
  8. 심정희, 황재란, 이재성, 김종현, 김성수, 2010. 미역 (Undaria pinnatifida)의 생장에 따른 영양염과 CO2 흡수율 변화. 한국수산학회지, 43: 679−686.
  9. 어업생산통계시스템, 2011. http://fs.fips.go.kr
  10. 전라남도해양수산과학원, 2011. 해조류 환경생태조사. pp. 62.
  11. 전방욱, 정익교, 1996. 구멍갈파래 (Ulva pertusa)의 노출 초기에 Nitrate Reductase의 in vivo 활성 증가. 한국조류학회지, 11: 243−246.
  12. 최태섭, 김광용, 2005. 구멍갈파래 (Ulva pertusa Kjellman)의 생태생리에 대한 생육기질의 효과. 한국조류학회지, 20: 369−377.
  13. 한국해양연구원, 2010. 해양 이산화탄소 분석 지침서. 범신사, 안산, pp.73−90.
  14. Abreu, M.H., R. Pereira, C. Yarish, A.H. Buschmann, and I. Sousa- Pinto, 2011. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312: 77−87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  15. Cabello-Pasini, A. and F.L. Figueroa, 2005. Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J. Phycol., 41: 1169−1177. https://doi.org/10.1111/j.1529-8817.2005.00144.x
  16. Cahill, P.L., C.L. Hurd and M. Lokman, 2010. Keeping the water clean-seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture, 306: 153−159. https://doi.org/10.1016/j.aquaculture.2010.05.032
  17. Caldeira, K. and M.E. Wickett, 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res., 110: 1−12.
  18. Choo, K.S., P. Snoeijs and M. Pedersen, 2002. Uptake of inorganic carbon by Cladophora glomerata (Chlorophyta) from the Baltic Sea. J. Phycol., 38: 493−502. https://doi.org/10.1046/j.1529-8817.2002.01083.x
  19. Davison, I.R., T.L. Jordan, J.C. Fegley and C.W. Grobe, 2007. Response of Laminaria saccharina (Phaeophyta) growth and photosynthesis to simultaneous ultraviolet radiation and nitrogen limitation. J. Phycol., 43: 636−646. https://doi.org/10.1111/j.1529-8817.2007.00360.x
  20. Dean, P.R. and C.L. Hurd, 2007. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand. J. Phycol. 43: 1138−1148. https://doi.org/10.1111/j.1529-8817.2007.00416.x
  21. DeBoer, J.A., 1981. Nutrients, In: The Biology of seaweeds, edited by Lobban, C.S. and M.J. Wynne, Blackwell, Oxford, England, pp. 356−391.
  22. Doney, S.C., W.M. Balch, V.J. Fabry and R.A. Feely, 2009. Ocean Acidification: A critical emerging problem for the ocean sciences. Ocenography, 22: 16−25.
  23. Figueroa, F.L., R. Santos, C.A. Rafael, L. Mata, J.L.G. Pinchetti, J. Matos, P. Huovinen, A. Schuenhoff and J. Silva, 2006. The use of chlorophyll fluorescence for monitoring photosynthetic condition of two tank-cultivated red macroalgae using fishpond effluents. Bot. Mar., 49: 275−282.
  24. Gómez, I., C. Wiencke and D.N. Thomas, 1996. Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis in relation to thallus age and size. Eur. J. Phycol., 31: 167−172. https://doi.org/10.1080/09670269600651341
  25. Gómez, I., D.N. Thomas and C. Wiencke, 1995. Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown alga Ascoseira mirabilis. Botanica Marina, 38: 157−164.
  26. Gómez, I., F. López-Figueroa, N. Ulloa, V. Morales, C. Lovengreen, P. Huovinen and S. Hess, 2004. Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar. Eco. Prog. Ser., 270: 103−116. https://doi.org/10.3354/meps270103
  27. Han, T., Y.-S. Han, J.M. Kain and D.-P. Hader, 2003. Thallus dif ferentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J. Phycol., 39: 712−721. https://doi.org/10.1046/j.1529-8817.2003.02155.x
  28. Hanisak, M.D., 1983. The nitrogen relationships of marine macroalgae. In: Nitrogen in the marine environment, edited by Garpenter, E.J. and D.G. Capone, Academic Press, New York, pp. 699−730.
  29. Harrison, P.J., L.D. Druehl, K.E. Lloyd and P.A. Thompson, 1986. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales, Phaeophyta). Mar. Biol., 93: 29−35. https://doi.org/10.1007/BF00428652
  30. Kang. Y.H., J.A. Shin, M.S. Kim and I.K. Chung, 2008. A preliminary study of the bioremediation potential of Codium fragile applied to seaweed integrated multi-trophic aquaculture (IMTA) during the summer. J. Appl. Phycol., 20: 183−190. https://doi.org/10.1007/s10811-007-9204-5
  31. Kang, Y.H., S.R. Park, J.H. Oak, T.H. Seo, J.A. Shin and I.K. Chung, 2009. Physiological responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) exposed to high ammonium effluent in a seaweed-based integrated aquaculture system. J. Fish. Sci. Technol., 12: 70−77. https://doi.org/10.5657/fas.2009.12.1.070
  32. Klenell, M., P. Snoeijs and M. Pedersén, 2004. Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia, 514: 41−53. https://doi.org/10.1023/B:hydr.0000018205.80186.3e
  33. Lewis, E. and D.W.R. Wallance, 1998. Program developed for CO2 system calculations, ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, http://cdiac.esd.ornl.gov/ oceans/co2rprt.html.
  34. Lobban, C.S. and P.J. Harrison, 1994. Seaweed ecology and physiology. Cambridge University Press, Cambrigde, pp. 163−208.
  35. Neori, A., F.E. Msuya, L. Shauli, A. Schuenhoff, F. Kopel and M. Shpigel, 2003. A novel three-stage seaweed(Ulva lactuca) biofilter design for intergrated mariculture. J. Appl. Phycol., 15: 543− 553. https://doi.org/10.1023/B:JAPH.0000004382.89142.2d
  36. Neori, A., M.D. Krom, S.P. Ellner, C.E. Boyd, D. Popper, R. Rabinovitch, P.J. Davison, O. Dvir, D. Zuber, M. Ucko, D. Angel and H. Gordin, 1996. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture, 141: 183−199. https://doi.org/10.1016/0044-8486(95)01223-0
  37. Neori, A., M. Shpigel and D. Ben-Ezra, 2000. A sustainable integrated system for culture of fish, seaweed and abalone, Aquaculture, 186: 279−291. https://doi.org/10.1016/S0044-8486(99)00378-6
  38. Ozaki, A., H. Mizuta and H. Yamamoto, 2001. Physiological differences between the nutrient uptakes of Kjellmaniella crassifolia and Laminaria japonica (Phaeophyceae). Fisheries Science, 67: 415−419. https://doi.org/10.1046/j.1444-2906.2001.00277.x
  39. Parker, B.C., 1971. The internal structure of Macrocystis. In: The biology of giant kelp beds (Macrocystis) in California. edited by North, W.J., J. Cramer, Lehre, pp. 99−121.
  40. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, England, 173 pp.
  41. Pedersen, M.F. and J. Borum, 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Progr. Ser., 142: 261−272. https://doi.org/10.3354/meps142261
  42. Rees, T.A.V., 2003. Safety factors and nutrient uptake by seaweeds. Mar. Ecol. Progr. Ser., 263: 29−42. https://doi.org/10.3354/meps263029
  43. Stengel, D.B. and M.J. Dring, 1998. Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia, 37: 259−268. https://doi.org/10.2216/i0031-8884-37-4-259.1
  44. Taylor, R.B., J.T.A. Peek and T.A.V. Rees, 1998. Scaling of ammonium uptake by seaweeds to surface area: volume ratio:geographical variation and the role of uptake by passive diffusion. Mar. Ecol. Progr. Ser., 169: 143−148. https://doi.org/10.3354/meps169143
  45. Teichberg, M., L.R. Heffner, S. Fox and I. Valiela, 2007. Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca: Responses to long and short-term N supply. Mar. Biol., 151: 1249−1259. https://doi.org/10.1007/s00227-006-0561-4
  46. Tyler, A.C. and K.J. McGlathery, 2006. Uptake and release of nitrogen by the macoralgae Gracilaria vermiculophylla (Rhodophyta). J. Phycol., 42: 515−525. https://doi.org/10.1111/j.1529-8817.2006.00224.x
  47. Young, E.B., J.A. Berges and M.J. Dring, 2009. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiologia Plantarum, 135: 400−411. https://doi.org/10.1111/j.1399-3054.2008.01199.x
  48. Zertuche-González, J.A., V.F. Camacho-Ibar, I. Pacheco-Ruíz, A. Cabello-Pasini, L.A. Galindo-Bect, J.M. Guzmán-Calderón, V. Maxias-Carranza and J. Espinoza-Avalos, 2009. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. J. Appl. Phycol., 21: 729− 736. https://doi.org/10.1007/s10811-009-9408-y
  49. Zou, D., 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture, 250: 726−735. https://doi.org/10.1016/j.aquaculture.2005.05.014

Cited by

  1. Real-time Monitoring of Environmental Properties at Seaweed Farm and a Simple Model for CO2Budget vol.17, pp.4, 2012, https://doi.org/10.7850/jkso.2012.17.4.243
  2. 기장과 완도해역에서의 수층별 다시마 (Saccharina japonica Areschoug) 생산성 vol.8, pp.2, 2011, https://doi.org/10.15433/ksmb.2016.8.2.054