INTRODUCTION

Carpal tunnel syndrome (CTS) is the most frequent compressive peripheral neuropathy. Surgical treatment of CTS continues to be one of the most frequently performed operations for peripheral neuropathy.²,⁴,¹⁴ Open carpal tunnel release (OCTR) has been the standard treatment for CTS that has failed non-surgical treatment and has provided excellent results, but could be associated with post-operative pillar pain, delayed improvement of pinch strength, and a slow return to work.²,¹⁴

Many investigators have described various types of endoscopic carpal tunnel release (ECTR) procedures to decrease post-operative pillar pain, and the duration of the hospital stay and reported positional variability of ulnar neurovascular structures with different wrist positions⁴,⁸,¹³,¹⁷,²². However, results about deviation of neurovascular structures are based upon dissected specimens which may not entirely represent intra-operative situations when normal anatomy is not violated.

Thus, the purpose of this study was to demonstrate the relationship between carpal tunnel and neurovascular structures in Guyon's canal in a group of patients with CTS and to confirm the change in location of the ulnar neurovascular structures with different wrist motions in patients with CTS when the normal anatomy is not violated.

MATERIALS AND METHODS

Twenty-eight patients with CTS were examined through wrist magnetic resonance (MR) imaging in three different positions (neutral, radial flexion, and ulnar flexion) from 2004 to 2007. The patients ranged 35 to 69 in age (mean, 51.2 years old) and...
consisted of 4 males and 24 females. All imaging was done on a 1.5-T signa scanner (General Electric, Milwaukee, WI, USA) with a wrist coil. Spin echo T1- and T2-weighted images of the carpal tunnel region were obtained with the wrist in a neutral position, and also in 25 degree radially-flexed and 50 degree ulnarly-flexed positions. Our MR imaging study included the performance of a routine protocol set of transverse T1-weighted (repetition time msec/echo time msec, 700/11; matrix, 256×256; number of signals acquired, one; field of view, 12 cm; imaging time, 2 minutes 29 seconds) and T2- and intermediate-weighted (2,000/20, 70; matrix, 256×256; number of signals acquired, one; field of view, 12 cm; imaging time, 6 minutes 48 seconds) dual spin-echo sequences in which the section thickness was 4 mm without an intersection gap. In addition, we performed a coronal contrast-enhanced frequency selective fat-suppressed 3D fast SPGR (spoiled gradient-recalled acquisition in the steady state) sequence (20.9/2.2; flip angle, 15°; matrix, 256×192; number of signals acquired, one; field of view, 12 cm).

We performed MRIs in 28 patients to determine how far the vital neurovascular structures of Guyon’s canal were located radially and whether the vital neurovascular structures of Guyon’s canal overlap the carpal tunnel at the hook of the hamate.

The axial images were obtained with a slice thickness of 3 mm, and the lateral margin of the hamate hook was used as a reference point to perform measurements on the structures in the distal Guyon’s canal. Linear measurements were made using mview 5.4 software (Marosis Technologies, Inc., Seoul, Korea).

The distance between the midpoints of the neurovascular structures and the lateral margin of the hamate hook was measured with the wrist in neutral, radial, and ulnar flexion. With respect to the relationship between the hook of the hamate and adjacent structures, and based on the lateral margin of the hook of the hamate, Guyon’s canal side (ulnar side) was designated as positive and the carpal tunnel side (the radial side) was designated as negative (Fig. 1).

We classified the patients into three groups based on the degree of overlapping of the contents of Guyon’s canal with the carpal tunnel. Group 1 included patients in whom the ulnar nerve and artery were located ulnar side to the hook of the hamate. Group 2 included patients in whom the ulnar artery was located radial side to the hook of the hamate, while the ulnar nerve was located ulnar side to the hook of the hamate. Group 3 included patients in whom both ulnar neurovascular structures were radial side to the hook of the hamate (Fig. 2).

RESULTS

There was a dynamic displacement of the contents of Guyon’s canal with a change in wrist position. Progressive radial migration of the ulnar neurovascular structures was noted as the wrist position moved from radial flexion through neutral, and then to ulnar flexion (Fig. 3).

The ulnar nerve was usually positioned ulnar to the hook of the hamate with the wrist held in the neutral position. However, there was an unusual case in which the ulnar nerve was located radial (-1.1 mm) to the hook of the hamate. The ulnar artery was on average located near the carpal tunnel, with the average position only 0.1 mm ulnar to the hamate.
The median nerve was progressively migrated radially as the wrist position moved from radial flexion through neutral, and then to ulnar flexion. In 12 of 28 patients the ulnar artery was positioned radial to the hook of the hamate, even in the neutral position, and in 1 of the patients the ulnar artery was 3.3 mm radial to the hamate hook, which was displaced as far as 5.7 mm radial to the hamate hook on ulnar flexion (Table 1).

The contents of Guyon’s canal overlapped the superficial surface of the carpal tunnel by 43% in the neutral position. With ulnar flexion, the overlap of Guyon’s canal relative to the carpal tunnel was maximal (85%) (Table 2).

DISCUSSION

Carpal tunnel surgery has evolved to decrease the rate of complications, and minimally invasive surgical techniques have become widespread compared with open surgery. The avoidance of surgical complications lies in proper knowledge of anatomy of the wrist and the surgeon’s experience. There are several anatomical structures prone to be injured during carpal tunnel release surgery, such as the recurrent motor and palmar cutaneous branches of the median nerve, the superficial palmar arch, Beretini’s branch, and the ulnar neurovascular structures.

According to a recent report, there are differences between open surgery and endoscopic surgery, in terms of complications. Palmer et al. reviewed complications of ECTR and OCTR over a 5-year period and found that in contrast with OCTR, vessel structures are more prone to be injured during ECTR. Such injuries might be due to the fact that the ulnar artery and nerve in the distal Guyon’s canal are deviated radially and overlap the carpal tunnel. In the distal portion of the canal, splayed ulnar neurovascular structures might be more vulnerable to injury during carpal tunnel release surgery.

In the current study there was substantial overlap of the contents of Guyon’s canal across the transverse carpal ligament in a high proportion of patients. With ulnar flexion of the wrist, there is a further radial displacement of these ulnar neurovascular structures, which may be more vulnerable to be injured in both open and endoscopic surgery. These anatomical relationships are important for endoscopists because the wrist position can change unintentionally during surgery when using local anesthesia. Therefore, this information about the dynamic changes in the location of the neurovascular structures will help to ensure optimal placement of the incision site for endoscopy and mini-open surgery, as well as to facilitate the least intrusive positioning of the endoscope.

ECTR is a surgical procedure with a rather steep learning curve. Thus, a thorough knowledge of hand anatomy is critical to avoid complications during the procedure.

CONCLUSION

The optimal technique that avoids injury to blood vessels caused by anatomic variations of the ulnar artery may occur during resection of the TCL. The MR findings indicates that transecting the ligament approximately 4 mm radial to the radial margin of the hook of the hamate may minimize post-operative bleeding and help avoiding iatrogenic injury of the ulnar neurovascular structures which is more prone to be caused as the scalpel is withdrawn when the wrist is placed in ulnar flexion and when the edge of the blade is placed toward the ulnar side during ECTR.

Table 1. Dynamic location change of the neurovascular structures with different wrist position

<table>
<thead>
<tr>
<th>Wrist position</th>
<th>Median nerve</th>
<th>Ulnar nerve</th>
<th>Ulnar artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>-9.7 mm (-6.5 to -13.2)</td>
<td>2.0 mm (-1.1 to 7.8)</td>
<td>0.1 mm (-3.3 to 4.7)</td>
</tr>
<tr>
<td>Radial flexion</td>
<td>-7.6 mm (-4.9 to -12.9)</td>
<td>3.0 mm (0.7 to 7.8)</td>
<td>0.5 mm (-1.8 to 5.2)</td>
</tr>
<tr>
<td>Ulnar flexion</td>
<td>-11.1 mm (-8.1 to -15.5)</td>
<td>1.2 mm (-1.7 to 5.8)</td>
<td>-1.9 mm (-5.7 to 2.5)</td>
</tr>
</tbody>
</table>

Table 2. The contents of Guyon’s canal overlap the superficial surface of the carpal tunnel

<table>
<thead>
<tr>
<th>Position</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>16 (57%)</td>
<td>9 (32%)</td>
<td>3 (11%)</td>
</tr>
<tr>
<td>Ulnar flexion</td>
<td>4 (14%)</td>
<td>18 (64%)</td>
<td>6 (21%)</td>
</tr>
<tr>
<td>Radial flexion</td>
<td>19 (68%)</td>
<td>9 (32%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Group 1 included patients in whom the ulnar nerve and artery were located ulnar side to the hook of the hamate. Group 2 included patients in whom the ulnar artery was located radial side to the hook of the hamate, while the ulnar nerve was located ulnar side to the hook of the hamate. Group 3 included patients in whom both ulnar neurovascular structures were radial side to the hook of the hamate (Fig. 2).

References

2. Bártová V: [The carpal tunnel syndrome, its diagnosis and therapy.] *Vnitr Lek* 39 : 476-480, 1993
8. Goetz JE, Theodens DR, Kunze NM, Lawler EA, Brown TD: Day-to-day variability of median nerve location within the carpal tunnel. *Clin Bio*

