DOI QR코드

DOI QR Code

A Study on the Reliability/Safety assessment and improvement of USN Gateway for Train Control

열차제어를 위한 USN Gateway 신뢰성, 안전성 평가 및 향상에 관한 연구

  • 신덕호 (한국철도기술연구원 지능형도시철도제어연구실) ;
  • 조현정 (한국철도기술연구원 지능형도시철도제어연구실) ;
  • 신경호 (한국철도기술연구원 지능형도시철도제어연구실) ;
  • 송용수 (한국철도기술연구원 무선통신열차제어연구단)
  • Received : 2011.01.19
  • Accepted : 2011.09.15
  • Published : 2011.10.26

Abstract

The recent development of USN (Ubiquitous Sensor Network) technology has broadened its applications to many fields of industry. The USN technology enables the system to monitor and control the status of distributed sensor nodes based on the low-powered communications. Applying the USN in the train control domain, the operational efficiency can be enhanced, where the reliability and the safety of the system are the key challenges. This paper suggests the system design for evaluating and improving the reliability and safety of the gateway, which is a USN component that manages the radio network among the sensors and collects the information from them. For this purpose, the reliability and the level of safety integrity of a general gateway have been predicted quantitatively and the supplementary design has been proposed for the selected week points. The verification on the reliability and the safety of the improved gateway according to the related standards has been followed. With the results of the study, the applicability of USN gateway for train control systems has been reviewed.

본 논문에서는 소출력 무선통신기술을 기반으로 분산 배치된 센서노드의 상태를 감시하고 제어를 수행하는 USN(Ubiquitous Sensor Network)시스템을 철도의 열차제어에 활용하기 위한 신뢰도 모델링결과를 제시한다. 일반적인 USN시스템은 센서노드, 게이트웨이, 서버로 구분할 수 있으며, 본 논문에서는 USN의 구성요소 중 다수의 센서노드간 무선망을 관리하고 정보를 취합하는 게이트웨이를 대상으로 신뢰성 및 안전성을 평가하고 향상시키기 위한 설계방안을 연구하였다. 이를 위해 일반적으로 사용되는 게이트웨이의 신뢰도와 안전무결성수준을 정량적으로 예측하고, 취약부분을 선별한 후 보완설계를 실시하여 향상된 게이트웨이의 신뢰성 및 안전성을 관련 규격에 따라 입증함으로써 열차제어에 대한 USN 게이트웨이 적용 가능성을 검토하였다.

Keywords

References

  1. IEC (1998) International Standard, Functional safety of electrical/electronic/programmable electronic safety-related systems (IEC 61508-1), pp. 23-26.
  2. IEC (2002) International Standard, Railway applications - Specification and demonstration of reliability, availability, maintainability and safety(RAMS)(IEC 62278), pp. 23-53.
  3. RSSB (2007) Engineering safety management(The Yellow Book), pp. 11-23.
  4. IEC (2007) International Standard, Railway applications - Communication, signaling and processing ystems - Safety related electronic systems for signaling, pp. 22-23.
  5. KRRI (2008) A Handbook for RAMS management of railway signaling, Appendix 3, pp. 5-6.
  6. IRSE (1992) Interrational technical committee, Report No.1, Safety system validation with regard to cross acceptance of signaling systems by the railways, Appendix A, pp. 43-45.
  7. D.K. Shin (2007) A Study on the safety demonstration of train control system, Journal of the Korean society for railway, 9(4), pp. 412-418.
  8. IEC (1998) International Standard, Functional safety of electrical/electronic/programmable electronic safety-related systems(IEC 61508-4), pp. 35.
  9. D.K. Shin (2007) A Study on reliability prediction for KOREA high speed train control system, Journal of the Korean society for railway, 9(4), pp. 419-424.
  10. D.K. Shin (2008) Railway Signaling - Self checking logic for standby sparing system, KOREA Patent No.10-0837597, 2008.06.05.
  11. RAC (2000) Reliability toolkit : Commercial practices edition, pp. 161.

Cited by

  1. A Study on the Implementation of an All-IP Train Communication Network Using Plastic Optical Fiber vol.16, pp.3, 2013, https://doi.org/10.7782/JKSR.2013.16.3.189