DOI QR코드

DOI QR Code

Tilting Train-induced Roadbed Response on the Conventional Line

틸팅열차 주행시 기존선 흙 노반의 응답특성

  • 고태훈 (한국철도기술연구원 고속철도연구본부) ;
  • 곽연석 (한국철도기술연구원 신교통연구본부) ;
  • 황선근 (한국철도기술연구원 신교통연구본부) ;
  • 사공명 (한국철도기술연구원 신교통연구본부)
  • Received : 2011.09.16
  • Accepted : 2011.10.10
  • Published : 2011.10.26

Abstract

It is a fact that the straightening of track alignment is one of the undoubted ways to improve the train speed on conventional lines, while that requires huge investment resources. Therefore, the operation of a tilting train as well as the minimum improvement of track is suggested as an effective and economical alternative way for the speed-up of conventional lines. Since a driving mechanism of tilting train is different from those of existing trains, in order to make sure its operation safety and stability on conventional line, the performance of track and roadbed must be preferentially evaluated on the conventional line. Furthermore, it is necessary to estimate the tilting-train-induced roadbed response in detail since the roadbed settlement can lead to the track deformation and even derailment. In this research, the patterns of wheel load and lateral force were monitored and analyzed through the field tests, and the derailment coefficient and degree of wheel off-loading were calculated in order to evaluate the tilting train running safety depending on the running speeds (120km~180km) on the conventional line. Moreover, roadbed pressure, settlement and acceleration were also observed as tilting-train-induced roadbed responses in order to estimate the roadbed stability depending on the running speeds. Consequently, the measured derailment coefficient and degree of wheel off-loading were satisfied with their own required limits, and all of the roadbed responses were less than those of existing high-speed train (KTX) over an entire running speed range considered in this study. As a result of this study, the tilting train which will be operated in combination with existing trains is expected to give no adverse impact on the conventional line even with its improved running speed.

한글초록은 기존선 고속화의 여러 대안 중 선로의 직 복선화 및 신선 건설에 의한 기존철도의 고속화는 시간단축 효과나 선로용량 증대의 폭은 크지만 막대한 투자 재원이 소요된다. 이에 비해 기존선을 그대로 사용하면서 속도를 향상하기 위해 선형개량 및 준고속 틸팅열차의 투입은 기존 인프라를 이용함으로서 보다 경제적이며 실용적이라는 장점이 있다. 하지만, 틸팅열차의 경우 기존열차와는 주행 메카니즘이 다르기 때문에 주행 안전성을 확보하기 위해서는 기존에 부설되어 있는 궤도노반의 성능평가가 선행되어야 한다. 또한 열차주행에 따라 발생하는 노반의 침하는 궤도틀림이나 열차의 탈선 등을 유발할 수 있으므로 틸팅열차 주행에 의해 발생하는 궤도 부담력에 따른 노반의 거동 특성을 분석할 필요가 있다. 본 연구에서는 현장계측을 통해 틸팅열차의 기존선 주행속도별(120~180km/h) 주행안전성과 노반성능을 평가하였다. 모든 주행속도에서 탈선계수와 윤중감소율 허용한계치를 만족하였으며, 또한 노반성능 면에서는 기존 운행 고속열차(KTX)에 비하여 작은 노반응답(노반압력, 노반침하, 노반진동가속도)을 보였다. 이러한 계측 결과를 기반으로, 기존열차와 혼용 투입될 틸팅열차는 본 연구의 계측대상 노선과 동일한 성능수준의 궤도노반에서는 최고운영속도(180km/h)에서 안전한 주행이 가능할 것으로 판단된다.

Keywords

References

  1. J.W. Lee, S.H. Lee, D.S. Kim, B.S. Kwon (2003) A Study on the Characteristics of Behavior of Railway Roadbed due to Softening, Proceedings of The Korean Society for Railway, pp. 182-187.
  2. S.S. Kwon (2008) Evaluation of the Dynamic Characteristic and Condition for the Railway Track using LFWD(Light Falling Weight Deflectometer), M.S. Thesis, Seoul National University of Technology.
  3. S.S. Jeon, G.Y. Eum, J.M. Kim (2007) Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad, Journal of Korean Society of Hazard mitigation, 7(1), pp. 29-38.
  4. S. Momoya, E. Sekin, F. Tatsuoka (2005) Deformation characteristics of railway Roadbed and Subgrade under Moving Wheel Load, Japanese Geotechnical Society(JGS), Soil and Foundation 45(4), pp. 99-118.
  5. Korea Railroad Research Institute (2005) Development of Track System Innovation Technology for Speed-Up of Conventional Line, Minister of Land, Transport and Maritime Affairs, pp. 51-54.
  6. J.M. Konard, D. Lachance (2000) Mechanical Properties of Unbound Aggregates from DCP and plate Load Test, Proceedings of the fifth International Conference on Unbound Aggregate in Roads, Nottingham, United Kingdom.
  7. 鐵道總合技術硏究所 (1992) 鐵道構造物等設計標準, 同解說 : 土構造物, 丸善株式會社.
  8. J.H. An, S.L. Yang, H.M. Park, S.A. Kwon (2004) Application of The Dynamic Cone Penetrometer for Strength Estimation of Pavement Foundation, Journal of Korean Society of Road Engineers, 6(3), pp. 17-26.
  9. R. Salgado, S. Yoon (2003) Dynamic Cone Penetration Test (DCPT) for Subgrade Assessment, Joint Transportation Research Program. Proj. No. FHWA/IN/JTRP-2002/30, SPR-2362 Published by Purdue University, pp. 14-16.
  10. J.W. Lee, C.Y. Choi, S.H. Lee, C.Y. Lee (2004) Characteristics of Behavior of the Soft Roadbed through Long-Term Instrumentation on the Field Test, Proceedings of the Korean Society for Railway, pp. 191-197.
  11. C.Y. Choi, S.H. Lee, S.K. Hwang (2007) Characteristics of Earth Pressure with Variable Roadbed Thickness by Railroad Loading, Journal of Korean Society of Civil Engineers D, 27(2), pp. 217-224.
  12. I.W. Lee, S.H. Lee, Y.S. Kang (2006) Characteristics of Roadbed Behaviors of Concrete Track for High-Speed Railway, Journal of the Korean Society for Railway, 9(3), pp. 298-304.
  13. K. Muramoto, E. Sekine (1998) A Study on the Compaction Control of Embankments to Receive Train Loads, RTRI REPORT, 12(4), pp. 31-36.
  14. J.H. Kim (2002) A Study on the Characteristic of Settlement with Thickness variation of Railway Roadbed, M.S. Thesis, Seoul National University of Technology.
  15. I.W. Lee, H.K. Kim, S.K. Hwang, Y.K. Cho (2000) The Characteristic of Reinforced Roadbed Settlement on High-Speed Railroad, Journal of Korean Society of Civil Engineers D, 20(6), pp. 681-690.
  16. E. Sekine, K. Muramoto (1995) Bearing Capacity of Actual Existing Roadbed. RTRI REPORT, pp. 31-36.
  17. M. Sunaga, E. Sekine (1991) Study on the Development of Economical Reinforced Roadbed, RTRI REPORT, 5(10), pp. 25-33.

Cited by

  1. A Study on the Effect Analysis of the Tilting Technology According to the Evaluation of Electric Power Consumption Energy of Rolling Stock vol.15, pp.4, 2012, https://doi.org/10.7782/JKSR.2012.15.4.329