DOI QR코드

DOI QR Code

Herbicidal Activity of Essential Oil from Palmarosa (Cymbopogon martini)

팔마로사 정유의 살초활성

  • Hong, Su-Young (Department of Biological Environment, Kangwon National University) ;
  • Choi, Jung-Sup (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Song-Mun (Department of Biological Environment, Kangwon National University)
  • 홍수영 (강원대학교 바이오자원환경학과) ;
  • 최정섭 (한국화학연구원 산업바이오화학연구센터) ;
  • 김성문 (강원대학교 바이오자원환경학과)
  • Received : 2011.01.03
  • Accepted : 2011.02.21
  • Published : 2011.03.31

Abstract

The objective of this study was to find herbicidal compounds in the essential oil of palmarosa (Cymbopogon martini). Of essential oils from basil (Ocimum basilicum), blackpepper (Piper nigrum), clary sage (Salvia sclarea), ginger (Zingiber pfficinale), hyssop (Hyssopus officinalis), nutmag (Myristica fragrance), palmarosa (Cymbopogon martini), fennel (Foeniculum vulgare), sage (Salvia leucantha), and spearmint (Mentha spicta), the herbicidal activity of palmarosa essential oil, which was determined by a seed bioassay using rapeseed (Brassica napus L.), was highest ($GR_{50}$ value, $201{\mu}g\;mL^{-1}$). In palmarosa essential oil, 11 volatile organic chemicals were identified by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus and the major constituents were geraniol (40.23%), geraniol acetate (15.57%), cis-ocimene (10.79%), and beta-caryophyllene (8.72%). The $GR_{50}$ values of geraniol, citral, nerol, and geranyl acetate were 151, 224, 452, and $1,214{\mu}g\;mL^{-1}$, respectively. In greenhouse and field experiments, foliar application of palmarosa essential oil at the level of $80kg\;ha^{-1}$ controlled weeds effectively. Overall results of this study showed that the herbicidal activity of palmarosa essential oil could be due to geraniol and citral which had lower $GR_{50}$ values.

Acknowledgement

Grant : 화학농약 대체기술

Supported by : 농촌진흥청

References

  1. 김미성, 이유선, 김희연, 최해진, 허수정, 권순배, 임상현, 김경희, 김성문. 2005. 족도리(Asarum sieboldii Miq.)로부터 신규 살초활성물질 elemicin 의 분리. 한국잡초학회지 25(3):202-208.
  2. 김성문. 2006. 국내 자생 살초활성 식물종의 탐색. 한국잡초학회지 26(3):225-245.
  3. 김성문. 김희연, 황기환, 전익조. 2008. 긴병꽃풀 (Glenchoma hederacea) 정유의 제초활성. 한국잡초학회지 28(2):152-160.
  4. 김성문, 허수정, 용석호, 김진석, 허장현. 2001. 천연물기원 살초활성물질. 한국잡초학회지 21:199-212.
  5. 이사은, 윤미선, 연보람, 최정섭, 조남규, 황기환, 왕해영, 김성문. 2010. 천연정유 Cajuput (Melaleuca cajeputi) 유래 benzaldehyde의 살초효과. 한국잡초학회지 30:191-198.
  6. 임상현, 김희연, 허수정, 김경희, 임순성, 김성문. 2007. 삼지구엽초(Epimedium koreanum Nakai)로부터 살초활성물질 methyl-p-hydroxybenzoate의 분리. 한국잡초학회지 27(3):235-240.
  7. 장현우, 서보람, 황현진, 김재덕, 김진석, 김성문, 전재철, 최정섭. 2010. 천연물질 chrysophanic acid 의 제초활성. 한국잡초학회지 30(2):143-152.
  8. 조남규, 이사은, 윤미선, 연보람, 정미정, 김성문. 2010. 가시박으로부터 분리된 신규의 제초활성 물질 3-히드록시-9에이치-크산텐-9-원 및 그 분리방법. 대한민국특허 10-2001-0116849.
  9. 최성환, 구홍모, 안재영, 남진선, 김형환, 천인규, 이증주. 2008. 식물정유의 단독 및 혼합처리가 밭잡초와 작물에 미치는 영향. 한국잡초학회지 28 (1):61-68.
  10. 최성환, 안재영, 박기웅, 이증주. 2009. 식물정유가 직파벼 및 피의 초기생장에 미치는 영향. 한국잡초학회지 29(4):318-322.
  11. Boyd, N. S., and E. B. Brennan. 2006. Burning nettle, common purslane and rye response to a clove oil herbicide. Weed Tech. 20:646-650. https://doi.org/10.1614/WT-05-137R1.1
  12. Copping, L. G. 2004. The manual of biocontrol agents. BCPC. pp. 472-473.
  13. Husnu Can Başer, K., and F. Demirci. 2007. Chemistry of essential oils. p. 43. In R. G. Berger, ed. Flavours and Fragrances. Springer.
  14. Ismaiel, A., and M. D. Pierson. 1990. Inhibition of growth and germination of C. botulinum 33A, 40B, and 1623E by essential oil of spices. J. Food Sci. 55:1676-1678. https://doi.org/10.1111/j.1365-2621.1990.tb03598.x
  15. Kim, S., J. H. Hur, D. S. Han and W. H. Vanden Born. 1997. Chorsulfuron-induced phytotoxicity in canola (Brassica napus L.) seedlings. Kor. J. Weed Sci. 17(2):199-206.
  16. Lawless, J. 1995. The illustrated encyclopedia of essential oils. Element Books. p. 133.
  17. Mao, L. M., G. Henderson and R. A. Laine. 2004. Germination of various weed species in response to vertiver oil and nootkatone. Weed Tech. 18:263-267. https://doi.org/10.1614/WT-03-034R2
  18. Mitchell, G., D. W. Bartlett., T. E. M. Fraser., T. R. Hawkes., D. C. Holt., J. K. Townson and R. A. Wichert. 2001. Mesotrione:a new selective herbicide for use in maize. Pest. Manag. Sci. 57:120-128. https://doi.org/10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E
  19. Prashar, A., P. Hill, R. G. Veness and C. S. Evans. 2003. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochem. 63(5):569-575. https://doi.org/10.1016/S0031-9422(03)00226-7
  20. Rao, B. R., P. N. Kaul, K. V. Syamasunder and S. Ramesh. 2005. Chemcial profiles of primary and secondary essential oils of palmarosa (Cymboposon martinii (Roxb.) Wats var. motia Burk.). Industrial Crops and Products 21(1): 121-127. https://doi.org/10.1016/j.indcrop.2004.02.002
  21. Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425-431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2

Cited by

  1. Isolation of Herbicidal Substances from Bulbs of Lycoris flavescens M.Y.Kim & S.T.Lee vol.31, pp.4, 2011, https://doi.org/10.5660/KJWS.2011.31.4.330
  2. Herbicidal Properties of 5,8-dihydroxy-1,4-naphthoquinone and Their Possible Mode of Action vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.250
  3. Herbicidal Activity of d-Limonene to Burcucumber (Sciyos angulatus L.) with Potential as Natural Herbicide vol.32, pp.3, 2012, https://doi.org/10.5660/KJWS.2012.32.3.263
  4. Herbicidal Activity and KAPAS Inhibition of Juglone with Potential as Natural Herbicide vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.240
  5. Insecticidal effect of several essential oils against Musca domestica vol.27, pp.1, 2018, https://doi.org/10.1007/s00580-017-2572-6