DOI QR코드

DOI QR Code

Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication

  • Luo, Ying (College of Life Science and Biotechnology, Mianyang Normal University) ;
  • Shang, Jing (Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), Sichuan University) ;
  • Zhao, Pingping (Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), Sichuan University) ;
  • Xi, Dehui (Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), Sichuan University) ;
  • Yuan, Shu (Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), Sichuan University) ;
  • Lin, Honghui (Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), Sichuan University)
  • Received : 2010.11.16
  • Accepted : 2010.12.16
  • Published : 2011.03.01

Abstract

Systemic acquired resistance is a form of inducible resistance that is triggered in systemic healthy tissues of local-infected plants. Several candidate signaling molecules emerged in the past two years, including the methylated derivatives of well-known defense hormones salicylic acid (SA) and jasmonic acid (JA). In our present study, the symptom on Cucumber mosaic virus (CMV) infected Arabidopsis leaves in 0.1 mM SA or 0.06 mM JA pre-treated plants was lighter (less reactive oxygen species accumulation and less oxidative damages) than that of the control group. JA followed by SA (JA${\rightarrow}$SA) had the highest inhibitory efficiency to CMV replication, higher than JA and SA simultaneous co-pretreatment (JA+SA), and higher than a JA or a SA single pretreatment. The crosstalk between the two hormones was further investigated at the transcriptional levels of pathogenesis-related genes. The time-course measurement showed JA might play a more important role in the interaction between JA and SA.

Keywords

References

  1. Cao, Y., Zhang, Z. W., Xue, L. W., Du, J. B., Shang, J., Xu, F., Yuan, S. and Lin, H. H. 2009. Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z. Naturforsch. 64c:231-238.
  2. Cui, J., Bahrami, A. K., Pringle, E. G., Hernandez-Guzman, G., Bender, C. L., Pierce, N. E. and Ausubel, F. M. 2005. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl. Acad. Sci. USA 102: 1791-1796. https://doi.org/10.1073/pnas.0409450102
  3. Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4:309-314. https://doi.org/10.1016/S1369-5266(00)00178-3
  4. Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
  5. Feys, B. J. and Parker, J. E. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16:449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  6. Glazebrook, J., 2001. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr. Opin. Plant Biol. 4:301-308. https://doi.org/10.1016/S1369-5266(00)00177-1
  7. Hernandez, J. A., Diaz-vivancos, P., Rubio, M., Olmos, E., Ros- Barcelo, A. and Martinez-Gomez, P. 2006. Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiol. Plant. 126:140-152. https://doi.org/10.1111/j.1399-3054.2005.00581.x
  8. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H. K. and Klessig, D. F. 2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12: 677-690. https://doi.org/10.1105/tpc.12.5.677
  9. Li, J., Brader, G., and Palva, E. T. 2004. The WRKY70 transcription factor: anode of convergence for jasmonate mediated and salicylate2mediated2 signals in plant defense. Plant Cell 16: 319-331. https://doi.org/10.1105/tpc.016980
  10. Miao, Y. and Zentgraf, U. 2007. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819-830. https://doi.org/10.1105/tpc.106.042705
  11. Mishina, T. E. and Zeier, J. 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50:500-513. https://doi.org/10.1111/j.1365-313X.2007.03067.x
  12. Petersen, M., Brodersen, P., Naested, H., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen, A. B. and Mundy, J. 2000. Arabidosis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111-1120. https://doi.org/10.1016/S0092-8674(00)00213-0
  13. Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  14. Pieterse, C. M. J., Ton, J. and van Loon, L. C. 2001. Cross-talk between plant defense signaling pathway: boost or burden? Agbiotechnet 3:1-8.
  15. Reymond, P. and Farmer, E. E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404-411. https://doi.org/10.1016/S1369-5266(98)80264-1
  16. Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K. Van Loon, L.C. Dong, X. N. and Pietersea, C. M. J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770. https://doi.org/10.1105/tpc.009159
  17. Spoel, S. H., Mou, Z., Tada, Y., Spivey, N., Genschik, P. and Dong, X. N. 2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860-872. https://doi.org/10.1016/j.cell.2009.03.038
  18. Shang, J., Xi, D. H., Huang, Q. R., Xu, M. Y., Yuan, S., Wang, S. D., Jia, S. D., Cao, S., Zhou, Z. L. and Lin, H. H. 2009. Effect of two satellite RNAs on Nicotiana glutinosa infected with Cucumber mosaic virus (CMV). Physiol. Mol. Plant Pathol. 74:184-190. https://doi.org/10.1016/j.pmpp.2009.11.005
  19. Shang, J., Xi, D. H., Yuan, S., Xu, F., Xu, M. Y., Qi, H. L., Wang, S. D., Huang, Q. R., Wen, L. and Lin, H. H., 2010. Difference of physiological characters in dark green islands and yellow leaf tissue of CMV-infected Nicotiana tabacum leaves. Z. Naturforsch. 65c:73-78.
  20. Shang, J., Xi, D. H., Xu, F., Wang, S. D., Cao, S., Xu, M. Y., Zhao, P. P., Zhang, Z. W., Jia, S. D., Wang, J. H., Yuan, S. and Lin, H. H. 2011. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta, DOI:10.1007/s00425-010- 1308-5.
  21. Takahashi, H., Miller, J., Nozaki, Y., Sukamuto, Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y. and Dinesh-Kumar, S. P. 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32:655-667. https://doi.org/10.1046/j.1365-313X.2002.01453.x
  22. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111. https://doi.org/10.1073/pnas.95.25.15107
  23. Thomma, B. P. H. J., Penninckx, I. A. M. A., Cammue, B. P. A. and Broekaert, W. F. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68. https://doi.org/10.1016/S0952-7915(00)00183-7
  24. Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. and Grant, M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104:1075-1080. https://doi.org/10.1073/pnas.0605423104
  25. Uquillas, C., Letelier, I., Blanco, F., Jordana, X. and Holuigue, L. 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant-Microbe Interact. 17:34-42. https://doi.org/10.1094/MPMI.2004.17.1.34
  26. Van, Loon, L. C. and Antoniw, J. F. 1982. Comparison of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Net. J. Plant Pathol. 88:237-256. https://doi.org/10.1007/BF02000130
  27. Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and some antioxidant system in acid rain-treated bean plants. Protective role of exogenous polymines. Plant Sci. 151:59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  28. Vernooij B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959-965. https://doi.org/10.1105/tpc.6.7.959
  29. Xi, D. H., Feng, H., Lan, L. Q. Du, J. B., Wang, J. H., Zhang, Z. W., Xue, L. W., Xu, W. and Lin, H. H. 2007. Characterization of synergy between cucumber mosaic virus and tobacco necrosis virus in Nicotiana benthamiana. J. Phytopath. 155:570-573. https://doi.org/10.1111/j.1439-0434.2007.01279.x

Cited by

  1. Evolution of jasmonate and salicylate signal crosstalk vol.17, pp.5, 2012, https://doi.org/10.1016/j.tplants.2012.02.010
  2. Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171902
  3. Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea vol.42, pp.4, 2013, https://doi.org/10.1007/s13313-013-0202-6
  4. Temperature-related effects of treatments with jasmonic and salicylic acids on Arabidopsis infected with cucumber mosaic virus vol.60, pp.5, 2013, https://doi.org/10.1134/S1021443713050166
  5. Manipulation of induced resistance to viruses vol.26, 2017, https://doi.org/10.1016/j.coviro.2017.08.001
  6. Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.NT.04.2012.0041