Robust Unit Root Tests for a Panel TAR Model

Dong Wan Shin ${ }^{1}$
${ }^{1}$ Department of Statistics, Ewha Womens University
(Received October 2010; accepted November 2010)

Abstract

Robust unit root tests are developed for dynamic panels consisting of TAR processes. The test statistics are all based on diverse combinations of individual t-type tests for significance of TAR coefficients. Limiting null distributions are established. A Monte-Carlo experiment compares the proposed tests. The tests are applied to a panel data set of Canadian unemployment rates which show asymmetric features as well as having outliers.

Keywords: Asymmetry, instrumental variable estimation, robustness, TAR process, unemployment rate, unit root test.

1. Introduction

During the last decade, testing for panel unit roots have attracted signifficant attention. In the early years, various tests for cross-sectionally uncorrelated error models were developed by Choi (2001), Levin et al. (2002), Im et al. (2003), and others. Shortly after these papers, extensions to models with cross-sectionally correlated errors were made by Phillips and Sul (2003), Bai and Ng (2004), Moon and Perron (2004), Shin and Kang (2006), and Choi and Chue (2007). Some results for correlated models were summarized by Pesaran (2007), and others. In the recent years, diverse studies were made by Herwartz and Siedenburg (2008) for wild bootstrapping, Gengenbach et al. (2010) for comparative study, and many others.

Robustness is an important issue for testing unit root. Various results are available by Lucas (1995) for a test based by M-estimator, Herce (1996) for a test constructed from a least absolute deviation(LAD) estimator, Shin and So (1999) for a test obtained by using a semiparametric adaptive M-estimator, So and Shin (2001) for a sign test, for Shin et al. (2009) for panel sign test.
Dynamic asymmetry is apparent in many economic and finance variables. Many authors argue that such variables have dynamics different from up-times, that is, the times at that these variables are increasing, to down-times. Examples of asymmetric variables are unemployment rates that show patterns depending on the business cycle: rapid deterioration for recession times and slow recovery for expansion times. See Koop and Potter (1999) and references therein. In addition, many finance variables such as stock prices and foreign exchange rates show wilder behaviors for big bad news than for big good news. See Tsay (2005) and references therein.

[^0]Classes of nonstationary TAR(threshold autoregressive) models were generally utilized to represent such dynamic asymmetry. Koop and Potter (1999) considered diverse TAR models in their Bayesian analysis of asymmetric features of US unemployment rates. Enders and Granger (1998) and Caner and Hansen (2001) provided unit root tests for TAR models. More studies were made by Shin and Lee (2001) for unit root tests and tests for asymmetry, Hansen and Seo (2002) for testing cointegration, Shin and Lee (2008) for panel unit root tests, and others.

We are interested in robust unit root tests for panel TAR models. Robustness is achieved by adopting the strategy of Huber (1981) of discounting large errors to smaller ones. Following the instrumental variable approach of Shin and Kang (2006) for estimating unit root, diverse statistics are constructed. Standard asymptotic null distributions are established for the statistics. A MonteCarlo experiment compares the proposed tests. The proposed tests are applied to a panel data set of yearly unemployment rates of Canadian provinces which show asymmetric features as well as outlying observations.

The remaining of the paper is organized as follows. In Section 2, robust tests are proposed and their limiting null distributions are established. In Section 3, a Monte-Carlo comparison of the proposed tests is made. In Section 4, a real data set is analyzed. In Section 5, a concluding remark is provided.

2. A TAR Model and Robust Tests

We are interested in a dynamic panel model given by

$$
\begin{equation*}
z_{i t}=\sum_{k=1}^{2} \rho_{k i}\left(y_{i, t-1}-\mu_{i, t-1}\right) I_{k i t}+u_{i t} \tag{2.1}
\end{equation*}
$$

$t=1, \ldots, T, i=1, \ldots, n$, where $\left\{y_{i t}, t=1, \ldots, T, i=1, \ldots, n\right\}$ is the set of observations over n-panel units for time period $t=1, \ldots, T, z_{i t}=\Delta y_{i t}=y_{i t}-y_{i, t-1}, I_{1 i t}=I\left(z_{i, t-1}>0\right)$ are the indicator variables for the events $\left(z_{i, t-1}>0\right), I_{2 i t}=1-I_{1 i t}$ are indicators for the other events $\left(z_{i, t-1} \leq 0\right)$, $\rho_{k i}$ are unknown autoregressive (AR) parameters, $\mu_{i t}$ are unknown mean functions, and $u_{i t}$ are regression errors. The errors $u_{i t}$ are allowed to be cross-sectionally dependent. Let $u_{t}=\left(u_{1 t}, \ldots, u_{n t}\right)^{\prime}$. Let $\Sigma_{u}=\operatorname{var}\left(u_{t}\right)$. For each i, the component series $y_{i t}$ is a TAR process whose AR coefficient is $\rho_{1 i}$ for up-times, i.e., times such that $y_{i, t-1}>y_{i, t-2}$ and is $\rho_{2 i}$ for down-times.
For the time being, we assume given values for $\mu_{i t}$ and Σ_{u} for a simple description of the main idea. Later test statistics are constructed with estimated values. We construct robust tests for the null hypothesis of unit roots

$$
H_{0}: \rho_{1 i}=\rho_{2 i}=0, \quad \text { for all } i=1, \ldots, n
$$

against the alternative hypothesis $H_{1}: \rho_{k i} \leq 0$ for all (k, i) and $\rho_{k i}<0$ for at least one (k, i). Let $\rho_{k}=\left(\rho_{k 1}, \ldots, \rho_{k n}\right)^{\prime}, k=1,2$. Let $z_{t}=\left(z_{1 t}, \ldots, z_{n t}\right)^{\prime}$ and let

$$
X_{k t}=\operatorname{diag}\left(\left(y_{1, t-1}-\mu_{1, t-1}\right) I_{k 1 t}, \ldots,\left(y_{n, t-1}-\mu_{n, t-1}\right) I_{k n t}\right), \quad k=1,2
$$

Then model (1) can be rewritten as

$$
z_{t}=\rho_{1} X_{1 t}+\rho_{2} X_{2 t}+u_{t}
$$

Since $X_{1 t}$ and $X_{2 t}$ are orthogonal, the ordinary least squares estimator(OLSE) is

$$
\bar{\rho}_{k}=\left(\sum_{t} X_{k t}^{\prime} X_{k t}\right)^{-1}\left(\sum_{t} X_{k t}^{\prime} z_{t}\right), \quad k=1,2 .
$$

Owing to the cross-sectional correlation of z_{t}, the distribution of the OLSE is not free from nuisance parameters arising from the cross-sectional correlation. In stationary cases, nuisance parameter dependency is removed if we use the Generalized Least Squares Estimator(GLSE) given by

$$
\tilde{\rho}_{k}=\left(\sum_{t} X_{k t}^{*^{\prime}} X_{k t}^{*}\right)^{-1}\left(\sum_{t} X_{k t}^{*^{\prime}} z_{t}^{*}\right), \quad k=1,2,
$$

where

$$
X_{k t}^{*}=\Gamma_{u} X_{k t}, \quad z_{t}^{*}=\Gamma_{u} z_{t}=\Gamma_{u} u_{t}
$$

and $\Gamma_{u}, \Gamma_{u}^{\prime}$ are LU decomposition of Σ_{u}^{-1} such that $\Gamma_{u} \Gamma_{u}^{\prime}=\Sigma_{u}^{-1}$.
However, unlike the stationary cases, as pointed out by Phillips and Sul (2003) and Shin and Kang (2006) for panels of AR processes, the null distributions of test statistics based on the GLSE depend on the nuisance parameter arising from cross-sectional correlation. Moreover, the tests based on the GLSE is not robust because the GLSE is sensitive to outlying errors $u_{i t}^{*}$ which are, under H_{0}, equal to $z_{i t}^{*}$.
The object of robustness is achieved by discounting large errors to smaller ones through

$$
z_{i t}^{* H}=h_{\ell}\left(z_{i t}^{*}\right),
$$

where

$$
h_{\ell}(x)=-1, \quad \text { if } \quad x \leq-\ell ; \quad h_{\ell}(x)=\frac{x}{\ell}, \quad \text { if } \quad|x|<\ell ; \quad h_{\ell}(x)=1, \quad \text { if } \quad x \geq \ell
$$

and $\ell \geq 0$ is a real number. The function h_{ℓ} was proposed by Huber (1981) and was widely used in robust estimation.
The object of nuisance-parameter-free asymptotics is achieved by adopting the instrumental variable (IV) approach of Shin and Kang (2006) with instrument

$$
\begin{aligned}
H_{k t} & =\operatorname{diag}\left(h_{m}\left(\frac{y_{1, t-1}-\mu_{1, t-1}}{\sigma_{1}}\right) I_{k 1 t}, \ldots, h_{m}\left(\frac{y_{n, t-1}-\mu_{n, t-1}}{\sigma_{n}}\right) I_{k n t}\right) \\
& =\operatorname{diag}\left(h_{k 1 t}, \ldots, h_{k n t}\right),
\end{aligned}
$$

where $m \geq 0$ is a real number,

$$
h_{k i t}=h_{m}\left(\frac{y_{i, t-1}-\mu_{i, t-1}}{\sigma_{i}}\right) I_{k i t},
$$

and $\sigma_{i}^{2}=\operatorname{var}\left(u_{i t}\right)$ is the (i, i) component of Σ_{u}.
In the instrumental variable, the purpose of using the discounting function $h_{m}()$ is for resolving nuisance parameter dependency and attaining normality rather than for robustness. Under H_{0},
as $T \rightarrow \infty,\left(y_{i, t-1}-\mu_{1, t-1}\right)$ is of probabilistic order $t^{1 / 2}$ and $\left|\left(y_{i, t-1}-\mu_{1, t-1}\right)\right|>m$ with high probability. Therefore, for large T,

$$
\begin{equation*}
\sum_{t} h_{m}\left(\frac{y_{i, t-1}-\mu_{i, t-1}}{\sigma_{i}}\right) I_{k i t} z_{i t}^{*} \cong \sum_{t} \operatorname{sign}\left(y_{i, t-1}-\mu_{i, t-1}\right) I_{k i t} z_{i t}^{*}, \quad i=1, \ldots, n, \quad k=1,2 \tag{2.2}
\end{equation*}
$$

which are asymptotically independent and standard normal if normalized by $T^{1 / 2}$. See Appendix for a formal justification.
The resulting robust IV-estimator is

$$
\hat{\rho}_{k}=\left(\sum_{t} H_{k t} X_{k t}^{*}\right)^{-1}\left(\sum_{t} H_{k t} z_{t}^{* H}\right)
$$

with estimated variance

$$
V_{\hat{\rho}_{k}}=\left(\sum_{t} H_{k t} X_{k t}^{*}\right)^{-1}\left(\sum_{t} H_{k t} V_{z^{* H}} H_{k t}\right)\left(\sum_{t} X_{k t}^{*^{\prime}} H_{k t}\right)^{-1},
$$

where $z_{t}^{* H}=\left(z_{1 t}^{* H}, \ldots, z_{n t}^{* H}\right)^{\prime}$ and $V_{z^{* H}}$ is an estimated variance of $z_{t}^{* H}$. Since elements of z_{t}^{*} are uncorrelated with zero mean and common variance, so are $z_{t}^{* H}$. Therefore, a natural estimator of the variance of $z_{t}^{* H}$ is

$$
V_{z^{* H}}=\hat{\sigma}^{* 2} I_{n}, \quad \hat{\sigma}^{* 2}=(n T)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T}\left(z_{i t}^{* H}\right)^{2} .
$$

Now, the Wald test for H_{0} is

$$
W=\sum_{k=1}^{2} \hat{\rho}_{k}^{\prime} V_{\hat{\rho}_{k}}^{-1} \hat{\rho}_{k}=\sum_{k=1}^{2}\left(\sum_{t} H_{k t} z_{t}^{* H}\right)^{\prime}\left(\sum_{t} H_{k t} V_{z^{* H}} H_{k t}\right)^{-1}\left(\sum_{t} H_{k t} z_{t}^{* H}\right) .
$$

Since $H_{k t}$ is diagonal, so is $\left(\sum_{t} H_{k t} V_{z^{* H}} H_{k t}\right)$. Hence the Wald test for H_{0} becomes

$$
W=\sum_{k=1}^{2} \sum_{i=1}^{n}\left(\hat{\tau}_{k i}\right)^{2},
$$

where

$$
\hat{\tau}_{k i}=\frac{\hat{\rho}_{k i}}{\operatorname{se}\left(\hat{\rho}_{k i}\right)}=\left(\hat{\sigma}^{*}\right)^{-1} \frac{\sum_{t} h_{k i t} z_{i t}^{H}}{\left(\sum_{t} h_{k i t}^{2}\right)^{\frac{1}{2}}},
$$

a t-type test for significance of $\rho_{k i}$, where se $\left(\hat{\rho}_{k i}\right)$ is the square root of the $i^{\text {th }}$ diagonal element of $V_{\hat{\rho}_{k i}}$. Taking advantage of the one-sided nature of the testing problem, we obtain the following modifications of the Wald test

$$
W^{-}=\sum_{k=1}^{2} \sum_{i=1}^{n}\left\{\left(\hat{\tau}_{k i}\right)^{-}\right\}^{2}
$$

and

$$
\bar{W}^{-}=\sum_{k=1}^{2}\left\{\left(\sum_{i=1}^{n} \hat{\tau}_{k i}\right)^{-}\right\}^{2}
$$

where $x^{-}=x$ if $x<0, x^{-}=0$ if $x \geq 0$. Instead of summing squares of $\hat{\tau}_{k i}$, following the averaging scheme of Im et al. (2003) and the p-value approach of Choi (2001), we obtain the following statistics

$$
\begin{aligned}
\bar{\tau} & =(2 n)^{-\frac{1}{2}} \sum_{k=1}^{2} \sum_{i=1}^{n} \hat{\tau}_{k i}, \\
P & =-2 \sum_{k=1}^{2} \sum_{i=1}^{n} \ln \left(p_{k i}\right),
\end{aligned}
$$

where

$$
p_{k i}=\Phi\left(\hat{\tau}_{k i}\right) \quad \text { is the } p \text {-value of } \hat{\tau}_{k i},
$$

and Φ is the cumulative distribution of the standard normal distribution.
Since Σ_{u} and mean function $\mu_{i t}$ are unknown, they should be replaced by their estimators $\hat{\Sigma}_{u}$ and $\hat{\mu}_{i t}$. Then $\hat{\tau}_{k i}=\sum_{t} h_{k i t} z_{i t}^{* H} /\left(\sum_{t} h_{k i t}^{2}\right)^{1 / 2}, i=1, \ldots, n, k=1,2$ are constructed using $z_{t}^{*}=\left(z_{1 t}^{*}, \ldots, z_{n t}^{*}\right)^{\prime}=\hat{\Gamma}_{u} z_{t}$ and $h_{k i t}=h_{m}\left(\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) / \hat{\sigma}_{i}\right) I_{k i t}$ where $\hat{\Gamma}_{u} \hat{\Gamma}_{u}^{\prime}=\hat{\Sigma}_{u}^{-1}$ is the LU-decomposition of $\hat{\Sigma}_{u}^{-1}$ and $\hat{\sigma}_{i}^{2}$ is the (i, i)-element of $\hat{\Sigma}_{u}$. The test statistics $W, \bar{\tau}, P, W^{-}, \bar{W}^{-}$ are constructed using these $\hat{\tau}_{k i}$.
As a H_{0}-consistent estimator of Σ_{u}, we may use $\hat{\Sigma}_{u}=T^{-1} \sum_{t} z_{t} z_{t}^{\prime}$. This estimator is recommended in case of large T relative to n because it is positive definite for $T>n$ and is simple to compute. When n is large, one can construct other estimators based on factor models as adopted by Phillips and Sul (2003), Moon and Perron (2004) and Bai and Ng (2004). More specifically, estimator $\hat{\Sigma}_{u}=\Sigma(\hat{\theta})$ is constructed using an estimator $\hat{\theta}$ of parameters for a factor model $u_{i t}=\sum_{\ell=1}^{L} \delta_{i \ell} f_{\ell t}+e_{i t}$ where $f_{\ell t}$ are independent zero mean errors having unit variance and $e_{i t}$ are independent zero-mean errors having variance $\sigma_{i i}^{e}$ independent of $f_{\ell t}$.
The mean function $\mu_{i, t-1}$ is recursively estimated in order for $\sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t} z_{i t}^{*}$ of (2) with estimated mean function $\hat{\mu}_{i, t-1}$ to have a martingale structure, which is essential for asymptotic normality, see Shin and So (2001) and the Appendix. For models with simple mean $\mu_{i t}=\mu_{i}$, we use $\hat{\mu}_{i, t-1}=\bar{y}_{i, t-1}=(t-1)^{-1} \sum_{s=1}^{t-1} y_{i s}$, the sample average of $\left\{y_{i 1}, \ldots, y_{i, t-1}\right\}$, to adjust $\mu_{i, t-1}$ in $y_{i, t-1}-\mu_{i, t-1}$. For models with time trend $\mu_{i t}=\beta_{i 0}+\beta_{i 1} t$, we use $\hat{\mu}_{i, t-1}=\bar{\beta}_{i 0, t-1}+\bar{\beta}_{i 1, t-1}(t-1)$, where ($\bar{\beta}_{i 0, t-1}, \bar{\beta}_{i 1, t-1}$) are the coefficients of ($1, s$) in the regression of $y_{i s}$ on $(1, s), s=1, \ldots, t-1$. In the following theorem, limiting null distributions of the test statistics are established.

Theorem 2.1. Consider model (1) with (a) $E\left[h_{\ell}\left(u_{i t}^{*}\right) \mid \mathcal{F}_{t-1}\right]=0, i=1, \ldots, n$, (b) for each $i \neq j$, $E\left[h_{\ell}\left(u_{i t}^{*}\right) h_{\ell}\left(u_{j t}^{*}\right) \mid \mathcal{F}_{t-1}\right]=0$, (c) finite Σ_{u}, where $F_{t}=\sigma\left(y_{i s}, s=1, \ldots, t, i=1, \ldots, n\right)$ is the σ algebra generated by $\left(y_{i s}, s=1, \ldots, t, i=1, \ldots, n\right)$. Assume that $\hat{\Sigma}_{u}$ is consistent as $T \rightarrow \infty$ and $\hat{\mu}_{i, t-1}$ is F_{t-1}-measurable. Then, under H_{0}, as $T \rightarrow \infty$, we have

$$
\begin{aligned}
& \operatorname{Pr}[W \leq x] \rightarrow \operatorname{Pr}\left[\chi_{2 n}^{2} \leq x\right], \\
& \operatorname{Pr}\left[W^{-} \leq x\right] \rightarrow \sum_{\ell=0}^{2 n}\left({ }_{\ell}^{2 n}\right) 0.5^{n} \operatorname{Pr}\left[\chi_{\ell}^{2} \leq x\right], \\
& \operatorname{Pr}\left[\bar{W}^{-} \leq x\right] \rightarrow \sum_{\ell=0}^{2}\left({ }_{\ell}^{2}\right) 0.5^{2} \operatorname{Pr}\left[\chi_{\ell}^{2} \leq x\right], \\
& \operatorname{Pr}[\bar{\tau} \leq x] \rightarrow \operatorname{Pr}[Z \leq x], \\
& \operatorname{Pr}[P \leq x] \rightarrow \operatorname{Pr}\left[\chi_{4 n}^{2} \leq x\right],
\end{aligned}
$$

where Z is a standard normal random variable, χ_{ℓ}^{2} is a chi-square random variable with ℓ degrees of freedom, and $\chi_{0}^{2}=0$.

Proof. See the Appendix.
The null distributions of test statistics W and P are asymptotically chi-squared with degrees of freedom $2 n$ and $4 n$, respectively, for large T. The limiting null distributions of W^{-}and \bar{W}^{-}are linear combinations of chi-square distributions which are called chi-bar square distributions. The statistic $\bar{\tau}$ is asymptotically standard normal under H_{0}. These distributions are free from nuisance parameters and are valid for both mean-adjusted tests and for trend-adjusted tests as well as for other adjustments for mean functions.
For serially independent $u_{i t}$, conditions (a) and (b) become

$$
E\left[h_{\ell}\left(u_{i t}^{*}\right)\right]=0, \quad E\left[h_{\ell}\left(u_{i t}^{*}\right) h_{\ell}\left(u_{j t}^{*}\right)\right]=0,
$$

which are satisfied if $u_{i t}, i=1, \ldots, n$ are jointly symmetrically distributed with origin zero. Since h_{ℓ} is an odd function, the distribution of $h_{\ell}\left(u_{i t}^{*}\right)$ is symmetric about zero satisfying $E\left[h_{\ell}\left(u_{i t}^{*}\right)\right]=$ 0 , and the joint distribution of $\left(h_{\ell}\left(u_{1 t}^{*}\right), \ldots, h_{\ell}\left(u_{n t}^{*}\right)\right)^{\prime}$ is symmetric about the origin, satisfying $E\left[h_{\ell}\left(u_{i t}^{*}\right) h_{\ell}\left(u_{j t}^{*}\right)\right]=0$.
The parameters ℓ is related with robustness and power of the test statistics. The tests are more robust for smaller ℓ. If error distributions are not heavy tailed, then the tests are more powerful for larger ℓ. The parameter m is related with the robustness of sizes of the tests. Sizes are more stable for smaller m. This issue will be addressed in a Monte-Carlo study in the following section.

3. A Monte Carlo Study

Finite sample size and power properties of the proposed tests are investigated for a model with one factor error,

$$
z_{i t}=\sum_{k=1}^{2} \rho_{k i}\left(y_{i, t-1}-\mu_{i}\right) I_{k i t}+u_{i t}, \quad u_{i t}=\delta_{i} f_{t}+e_{i t} .
$$

We consider 4 errors for $u_{i t}$ and f_{t} :
$D_{1}: N(0,1)$, the standard normal,
$D_{2}: 0.9 N(0,1)+0.1 N(0,10)$, a normal mixture,
$D_{3}: C(0,1)$, the standard Cauchy,
$D_{4}: u_{i t}=\epsilon_{i t} \sqrt{1+0.9 u_{i, t-1}^{2}}$ and $f_{t}=\epsilon_{t} \sqrt{1+0.9 f_{t-1}^{2}}$, ARCH errors,
where $\epsilon_{i t}, \epsilon_{t}$ are i.i.d. $N(0,1)$ errors and $u_{i t}, f_{t}$ are independent.
The factor loading coefficients δ_{i} are independently generated from $U\left(d_{0}, d_{1}\right)$ with $\left(d_{0}, d_{1}\right)=$ $(0,0.5),(1,3)$, where $U\left(d_{0}, d_{1}\right)$ is the uniform distribution on $\left(d_{0}, d_{1}\right)$. The corresponding cases are denoted by C_{1}, C_{2}, respectively, which correspond to weak and strong cross-sectional correlation, respectively: errors under C_{1} have average cross-section correlation smaller than 0.1 and errors under C_{2} have average cross-section correlation larger than 0.6.

Table 3.1. Sizes(\%) of tests based on 10,000 replications. $\rho_{1 i}=\rho_{2 i}=0$.

n		T	$\ell=0, m=0$				$\ell=0, m=2$				$\ell=2, m=0$				$\ell=2, m=2$				
		\bar{W}^{-}	$\bar{\tau}$	P	W^{-}														
$u_{i t}, f_{t} \sim N(0,1)$																			
C_{1}	5		50	4.8	4.8	4.8	4.7	7.4	7.8	7.4	6.5	4.5	4.8	4.5	4.4	7.6	8.5	7.7	6.7
C_{1}	20	50	3.9	3.9	4.0	4.1	8.1	8.8	8.5	7.3	3.7	3.4	3.9	4.1	8.7	9.5	9.6	8.5	
C_{1}	5	100	4.8	4.7	4.4	4.5	6.2	6.3	6.1	5.8	4.5	4.5	4.5	4.5	6.6	6.9	6.7	6.2	
C_{1}	20	100	4.2	4.5	4.6	4.7	7.2	8.0	7.6	7.1	4.3	4.4	4.4	4.5	8.2	8.6	8.8	8.0	
C_{2}	5	50	4.6	4.6	4.7	4.7	6.1	6.6	5.9	5.3	4.6	4.6	4.5	4.2	6.4	6.7	5.9	5.2	
C_{2}	20	50	4.6	4.5	4.4	4.3	6.8	6.9	6.5	5.6	4.5	4.8	4.3	4.0	7.3	7.8	7.1	6.0	
C_{2}	5	100	4.8	4.9	4.8	4.9	5.8	6.2	5.8	5.5	4.7	5.0	4.9	4.9	5.9	6.3	5.7	5.8	
C_{2}	20	100	4.8	4.8	4.5	4.6	6.1	6.7	6.4	5.9	4.4	4.7	4.5	4.4	6.4	7.0	6.7	6.3	
$u_{i t}, f_{t} \sim 0.9 N(0,1)+0.1 N(0,10)$																			
C_{1}	5	50	4.9	5.2	5.0	4.9	7.0	7.7	7.0	6.4	5.2	5.1	5.0	4.8	7.8	8.3	7.9	7.1	
C_{1}	20	50	4.2	4.4	4.7	4.6	7.7	8.6	8.9	7.8	3.7	3.7	4.4	4.5	8.6	9.1	9.8	8.8	
C_{1}	5	100	5.2	5.2	5.2	5.1	6.6	6.6	6.8	6.4	5.0	5.0	5.2	5.3	7.2	7.5	7.3	6.9	
C_{1}	20	100	4.8	4.9	5.1	5.0	7.6	8.3	7.9	7.3	4.5	4.3	4.8	5.0	8.0	8.5	8.8	8.2	
C_{2}	5	50	4.5	4.8	4.4	4.7	5.9	6.2	5.8	5.2	4.5	4.8	4.7	4.7	6.2	6.4	6.4	5.9	
C_{2}	20	50	5.2	5.4	5.0	4.8	7.3	7.8	6.9	5.8	4.9	4.7	4.9	4.6	7.2	8.0	7.3	6.3	
C_{2}	5	100	4.6	4.9	4.7	4.8	5.8	5.8	5.6	5.4	4.7	4.9	4.8	4.7	6.3	6.3	6.1	5.9	
C_{2}	20	100	5.4	5.1	4.8	4.5	6.7	6.7	6.4	5.8	5.1	4.9	4.7	4.6	6.8	6.9	6.8	6.2	
$u_{i t}, f_{t} \sim C(0,1)$																			
C_{1}	5	50	4.8	4.5	4.5	4.6	5.3	5.4	4.8	4.5	4.5	4.6	5.3	5.8	5.4	5.9	6.6	6.9	
C_{1}	20	50	4.9	4.6	4.6	4.6	6.4	6.6	6.3	5.3	4.6	4.2	5.1	6.0	6.5	6.6	6.7	7.5	
C_{1}	5	100	4.7	4.7	4.7	4.6	5.2	5.4	5.2	4.8	5.0	4.6	5.6	6.3	5.4	5.9	6.5	7.1	
C_{1}	20	100	5.4	5.0	5.3	5.3	6.9	6.7	6.7	6.3	5.0	4.6	5.9	7.2	6.7	7.3	8.2	9.3	
C_{2}	5	50	5.0	5.0	5.0	4.9	5.8	5.9	5.6	5.3	5.0	5.2	5.5	5.9	6.1	6.2	6.8	7.2	
C_{2}	20	50	7.6	7.1	6.6	5.9	9.3	8.6	7.8	6.4	5.9	5.9	6.1	5.9	7.9	7.8	7.6	7.6	
C_{2}	5	100	5.6	5.3	4.8	4.9	5.9	5.8	5.6	5.2	5.1	5.0	5.5	6.2	6.0	5.5	6.3	7.4	
C_{2}	20	100	9.9	8.6	8.2	6.9	11.6	10.5	9.4	7.8	7.6	7.2	7.3	7.7	9.7	9.1	9.3	9.1	
$u_{i t}=\epsilon_{i t} \sqrt{1+0.9 u_{i, t-1}^{2}}, f_{t}=\epsilon_{t} \sqrt{1+0.9 f_{t-1}^{2}}, \epsilon_{i t}, \epsilon_{t} \sim N(0,1)$																			
C_{1}	5	50	4.7	4.7	4.6	4.7	7.4	7.7	7.0	6.3	4.6	4.4	4.4	4.3	9.6	9.7	11.0	10.8	
C_{1}	20	50	4.4	4.2	4.3	4.4	8.7	9.7	9.5	8.2	4.0	3.8	3.8	3.8	11.0	11.4	15.3	15.1	
C_{1}	5	100	5.1	5.3	5.3	5.3	6.6	6.9	6.9	6.5	5.3	5.2	5.3	5.3	8.4	8.8	9.4	9.1	
C_{1}	20	100	4.6	4.5	4.4	4.6	8.0	8.4	8.2	7.2	4.6	4.3	4.2	4.3	10.2	10.4	12.6	12.8	
C_{2}	5	50	5.3	5.1	4.8	4.5	7.1	7.0	6.2	5.4	5.2	5.2	4.9	4.7	8.4	8.5	8.6	7.8	
C_{2}	20	50	5.7	5.1	5.3	5.1	7.8	7.8	7.0	6.1	5.1	4.6	4.7	4.4	8.2	8.5	9.0	8.0	
C_{2}	5	100	5.4	5.2	5.1	5.0	6.8	6.7	6.4	6.0	5.4	5.3	5.0	5.1	7.5	7.8	7.8	7.3	
C_{2}	20	100	6.7	6.2	5.8	5.5	8.7	8.2	7.6	6.9	6.3	5.6	5.2	5.0	8.9	8.4	8.7	8.1	

The autoregressive parameters are generated as: $\rho_{1 i}=\rho_{2 i}=0$ for size study and $\rho_{1 i} \sim U(-0.1,0)$, $\rho_{2 i} \sim U(-0.2,0)$ for power study. The other parameters are set to: $n=5,20 ; T=50,100$.
In simulating data $y_{i t}$, standard normal, standard Cauchy, and uniform errors are generated by IMSL (1989) FORTRAN subroutines RNNOA, RNCHY, RNUN, respectively. Initial values $y_{i t}$ and others for $t=0$ are all set to zero.
We choose $\ell=0,2 ; m=0,2$. We use $\hat{\Sigma}_{u}=T^{-1} \sum_{t} z_{t} z_{t}^{\prime}$ and use mean adjustments $\hat{\mu}_{i, t-1}=\bar{y}_{i, t-1}$. Rejected percentages of level 5% tests out of 10,000 replications are reported in Tables 3.1, 3.2.

Table 3.2. Powers (\%) of tests based on 10,000 replications. $\rho_{1 i} \sim U(-0.1,0), \rho_{2 i} \sim U(-0.2,0)$.

	n	T	$\ell=0, m=0$				$\ell=0, m=2$				$\ell=2, m=0$				$\ell=2, m=2$			
			\bar{W}^{-}	$\bar{\tau}$	P	W^{-}	\bar{W}^{-}	$\bar{\tau}$	P	W	\bar{W}	$\bar{\tau}$	P	W	\bar{W}	$\bar{\tau}$	P	W^{-}
$u_{i t}, f_{t} \sim N(0,1)$																		
C_{1}	5	50	31.1	33.8	29.6	22.3	49.5	53.6	46.4	35.5	43.5	47.7	39.8	30.0	67.9	73.0	64.9	50.5
C_{1}	20	50	69.0	72.6	63.0	47.0	91.1	93.3	87.8	72.7	86.9	89.6	81.0	62.7	98.9	99.3	97.9	90.4
C_{1}	5	100	63.7	67.6	62.1	51.6	82.1	84.2	81.2	71.3	82.9	85.4	81.8	70.9	95.1	96.6	95.3	90.3
C_{1}	20	100	98.6	99.1	98.1	93.1	100.	100.	99.9	99.3	100.	100.	99.9	99.3	100.	100.	100.	100.0
C_{2}	5	50	19.7	20.3	21.6	20.2	28.3	28.7	31.5	28.8	26.3	26.3	29.6	27.1	39.1	38.7	45.7	43.2
C_{2}	20	50	28.0	28.5	32.5	29.7	42.5	42.8	51.4	47.0	39.1	38.6	47.5	45.3	57.5	56.6	70.6	68.9
C_{2}	5	100	38.0	36.8	45.8	45.3	50.3	48.5	61.8	61.0	50.9	48.1	62.5	62.6	64.0	61.5	79.6	80.1
C_{2}	20	100	63.0	58.6	78.0	78.9	76.8	72.8	91.4	92.5	77.2	72.6	92.4	93.7	88.0	85.0	98.5	98.9
$u_{i t}, f_{t} \sim 0.9 N(0,1)+0.1 N(0,10)$																		
${ }_{1}$	5	50	39.9	43.	38.3	30.5	60.9	64.8	59.4	47.7	48.0	51.6	44.4	34.5	72.8	4	. 4	57.7
C_{1}	20	50	77.8	81.7	73.5	57.6	95.7	96.9	94.3	84.5	88.3	91.3	83.9	66.4	99.3	99.6	98.7	93.1
C_{1}	5	100	76.5	79.7	76.0	66.5	90.9	92.7	91.4	85.5	86.9	89.7	86.5	77.2	97.3	98.2	97.5	94.2
C_{1}	20	100	99.8	99.9	99.8	98.3	100.	100.	100.	100.	100.	100.	100.	99.7	100.	100.	100.	100.0
C_{2}	5	50	23.5	23.9	27.0	25.4	34.9	35.3	40.2	37.7	28.3	28.4	33.0	31.0	42.7	42.5	50.6	48.3
C_{2}	20	50	35.1	35.2	42.4	40.2	49.0	49.3	61.3	58.8	42.8	42.2	53.5	51.0	60.5	59.2	74.8	74.7
C_{2}	5	100	46.3	44.5	57.0	56.6	59.4	57.4	73.5	74.0	54.8	52.3	67.7	68.2	68.4	66.0	84.2	84.9
C_{2}	20	100	71.8	67.7	87.5	88.9	83.7	80.1	96.4	97.0	80.8	76.7	95.3	96.0	90.7	87.7	99.0	99.2
$u_{i t}, f_{t} \sim C(0,1)$																		
C_{1}	5	50	74.6	76.8	82.0	79.1	90.3	91.0	95.4	94.5	55.0	58.2	55.6	46.9	84.1	86.0	87.5	81.6
C_{1}	20	50	91.6	92.6	96.1	94.8	97.8	97.8	99.3	99.4	82.3	84.2	85.4	75.3	96.6	96.6	98.7	97.9
C_{1}	5	100	91.9	92.1	97.2	97.3	97.1	96.7	99.3	99.4	89.1	90.6	91.3	87.7	97.2	96.9	99.0	98.7
C_{1}	20	100	99.2	98.8	99.9	100.	99.4	99.1	100.	100.	98.5	98.4	99.4	99.2	99.2	99.0	99.9	99.9
C_{2}	5	50	53.0	53.4	67.3	68.4	68.0	68.3	84.1	85.5	38.8	39.1	46.9	44.8	59.7	58.6	74.5	73.0
C_{2}	20	50	62.2	61.2	81.7	84.6	75.7	74.5	92.6	95.4	51.8	50.2	67.7	66.2	71.3	68.7	90.0	91.3
C_{2}	5	100	76.4	75.0	90.5	92.2	85.3	84.0	96.4	97.1	67.3	66.1	80.3	79.8	82.1	79.3	94.8	95.5
C_{2}	20	100	87.7	84.6	98.3	99.2	91.5	88.6	99.1	99.5	82.4	79.5	95.0	95.9	89.7	86.6	98.7	99.3
$u_{i t}=\epsilon_{i t} \sqrt{1+0.9 u_{i, t-1}^{2}}, f_{t}=\epsilon_{t} \sqrt{1+0.9 f_{t-1}^{2}}, \epsilon_{i t}, \epsilon_{t} \sim N(0,1)$																		
C_{1}	5	50	33.7	36.5	32.4	26.2	54.6	59.0	53.4	42.8	41.2	44.3	37.5	27.8	69.7	71.6	70.3	61.0
C_{1}	20	50	67.7	70.8	63.5	49.2	91.5	93.4	89.2	77.1	82.5	85.0	77.0	58.5	98.1	98.5	98.3	94.3
C_{1}	5	100	68.1	71.0	67.4	58.5	87.1	89.0	86.9	79.3	79.3	81.9	78.4	67.8	94.1	94.8	95.0	91.1
C_{1}	20	100	98.7	99.1	98.6	94.8	99.9	99.9	99.9	99.7	99.8	99.9	99.8	98.8	100.	99.9	100.	100.0
C_{2}	5	50	22.4	22.8	24.9	23.0	33.8	33.6	37.9	35.7	27.4	27.2	30.2	28.5	43.9	42.8	52.8	51.1
C_{2}	20	50	33.4	33.7	39.9	37.6	49.7	49.1	59.2	56.8	42.4	41.8	51.0	47.7	62.1	60.6	77.0	77.2
C_{2}	5	100	44.1	42.9	52.6	51.4	59.3	56.1	70.8	70.1	53.2	50.9	63.4	62.1	69.6	66.0	83.0	83.1
C_{2}	20	100	67.3	63.7	83.0	83.9	80.0	76.4	94.1	95.4	77.8	74.2	92.4	93.1	88.8	85.8	98.5	98.9

The size results are reported in Table 3.1. We see that all the four tests $\bar{W}^{-}, \bar{\tau}, P, W^{-}$have similar size performances. The table show us stable null behaviors of the proposed tests whose empirical size values are reasonably close to the nominal level 5% except for a few cases of $\ell=m=2$. The tests corresponding to $m=0$ have size values very close to 5% under all cases considered here. The tests corresponding to $m=2$ are slightly oversized, especially under ARCH error.
The strong cross-sectional dependence corresponding to C_{2} does not prevent the proposed tests from having good size values. Size performances are similar for all (n, T) considered here except for a few cases.

Under the well-behaved standard normal error D_{1} and moderately outlying errors of the normal mixture error D_{2}, size values of all the tests seem good. Even under the outlying Cauchy errors D_{3} in which covariance matrix Σ_{u} does not exist, rotation by the sample covariance matrix $\hat{\Sigma}_{u}$ is successful in resolving cross-section dependence of C_{2}, producing stable size values of the tests except for $(n=20, T=100, m=2)$. Under ARCH error of D_{4}, sizes are all good except for $(\ell, m)=(2,2)$.

Power performances of the tests are reported in Table 3.2. We see that powers are sensitive to ℓ, m. Relative power performances vary according to error distributions depending on whether error variances are finite as in D_{1}, D_{2}, D_{4} or infinite as in D_{3}.
For the normal error D_{1}, as expected, tests with $(\ell, m)=(2,2)$ seem to have the highest powers. The tests with $(\ell, m)=(2,2)$ still seem to hold a power advantage over tests with other (ℓ, m) for the moderately outlying normal mixture error D_{2} and ARCH errors D_{4}. For errors D_{1}, D_{2} and D_{4}, tests with $(\ell, m)=(0,2)$ seem to have better powers than the tests with $(\ell, m)=(0,0),(2,0)$. However, we should note that the high power values of tests with $(\ell, m)=(0,2),(2,2)$ due in part to the oversizes as seen in Table 3.1. If the oversizes are adjusted, the tests with $(\ell, m)=(0,2),(2,2)$ would lose much of their power advantages over the tests with $(\ell, m)=(2,0)$. We may say that tests with $(\ell, m)=(2,0)$ have powers comparable to those with $(\ell, m)=(0,2),(2,2)$. For the outlying Cauchy error D_{3}, tests with $(\ell, m)=(0,2)$ have highest power values.
Relative performances of the four tests vary according to cross-section dependence structure. For the weakly dependent case of C_{1}, the test $\bar{\tau}$ seem to have the highest powers. For the strongly dependent case of C_{2}, the two tests P, W^{-}have higher powers than the other tests.
Combining the size results and power results we conclude the following: for the finite variance errors, tests with $(\ell, m)=(2,0)$ are best in that they have best size performance and have powers not worse than tests with other (ℓ, m) considered here; for the infinite variance error, tests with $(\ell, m)=(0,2)$ are best; if cross-section dependence is not strong, the test $\bar{\tau}$ performs better than the other three tests. If cross-section dependence is strong, the tests P, W^{-}perform better than the other two tests.

4. An Example

The proposed tests are illustrated by analyzing a panel data set of 10 Canadian provinces. Annual unemployment rates(\%) for the period of 1976-2009 are depicted in Figure 4.1. The data set is obtained from Statistics Canada. We have $n=10, T=34$.

Many people argued that data generating processes of unemployment rates are nonstationary. The classical Dickey-Fuller tests are not usually rejected. Some people such as Caner and Hansen (2001) claimed that unemployment rates are better modelled by stationarity than nonstationarity if we allow asymmetry via TAR models. This issue will be investigated in panel context for the Canadian unemployment rates.
In Figure 4.2, the differences of the state unemployment rates are displayed. The figure reveals apparent asymmetric features that positive peaks are sharper than negative peaks. This is related with the asymmetry of the business cycle where recessions are usually sharper than expansions. Moreover, some sharp increases indicate that the distributions are heavier tailed than normal distributions. For examples, in the year 1982, three provinces(BC, MB, QC) have unemployment increases greater than the corresponding (sample mean $+3 \times$ sample standard deviation). The

Figure 4.1. Canadian regional unemployment rates(\%)

Figure 4.2. Canadian regional unemployment rate changes(\%)
average of sample correlation coefficients of all the pairs of the differenced series is 0.626 . This average value is considerably large, indicating a strong cross-sectional correlation. These observations motivate us to use the proposed robust tests taking account asymmetry and cross-sectional correlation.
Test statistics as well as their p-values are provided in Table 4.1 for values of $\ell, m=0,2$. In computing the test statistics, simple means are adjusted and $\hat{\Sigma}_{u}=T^{-1} \sum_{t} z_{t} z_{t}^{\prime}$ are used. For all ℓ, m considered here, all statistics have p-values greater than 0.1 indicating presence of unit roots. Even if asymmetry is allowed, our analysis is in favor of nonstationarity of the data generating

Table 4.1. Panel unit root tests for yearly Canadian provincial unemployment rates.

ℓ	m	\bar{W}^{-}	p-value	$\bar{\tau}$	p-value	P	p-value	W^{-}	p-value
0	0	.00	.75	1.81	.96	27.77	.93	4.46	
0	2	.50	.44	.80	.79	32.94	.78	.89	
2	0	.00	.75	1.46	.93	31.15	.84	6.32	.75
2	2	.33	.49	.36	.64	35.66	.67	7.26	.67

process of the unemployment rates rather than stationarity.

5. Conclusion

Robust unit root tests are developed for panel data sets having asymmetric and outlying aspects. Asymmetry is addressed by employing a TAR model and robustness is attained by adopting the discounting principle of Huber (1981) for robust M-estimation. The test statistics have standard limiting null distributions which are simple functions of standard normal distributions. A MonteCarlo experiment is conducted to investigate sizes and powers of the proposed tests in diverse situations of error distributions and tuning parameters ℓ, m. A Canadian regional unemployment rate data set is analyzed by the proposed test statistics, revealing evidence for unit roots.

Appendix : Proof of Theorem 1.

Under H_{0}, for each $i, y_{i t}$ is a random walk and is of probabilistic order $t^{1 / 2}$. Therefore, according to Lemma $1(b)$ of Shin and Lee $(2001), \hat{h}_{k i t} \cong \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t}$ in that

$$
\sum_{t} \hat{h}_{k i t}^{2}=\sum_{t}\left\{\operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t}\right\}^{2}+o_{p}(T)=\sum_{t} I_{k i t}+o_{p}(T)
$$

and that, together with consistency of $\hat{\Sigma}_{u}$,

$$
\sum_{t} \hat{h}_{k i t} \hat{z}_{i t}^{*}=\sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t} u_{i t}^{*}+o_{p}\left(T^{\frac{1}{2}}\right) .
$$

Therefore, by the law of large numbers,

$$
T^{-1} \sum_{t} \hat{h}_{k i t}^{2}=T^{-1} \sum_{t} I_{k i t}+o_{p}(T) \xrightarrow{p} q_{k i},
$$

where $q_{k i}=E\left(I_{k i t}\right)=P\left(z_{i t}>0\right)$. We show that $T^{-1 / 2} \sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) u_{i t}^{*} \xrightarrow{d} q_{k i} E_{k i}$, where $E_{k i}, i=1, \ldots, n, k=1,2$ are independent standard normal random variables. Then $\hat{\tau}_{k i}=\left(\sum_{t} h_{k i t}^{2}\right)^{-1 / 2} \sum_{t} \hat{h}_{k i t} \hat{z}_{i t}^{*} \xrightarrow{d} E_{k i}$. Therefore, we get

$$
W=\sum_{k} \sum_{i} \hat{\tau}_{k i}^{2}=\sum_{k} \sum_{i} E_{k i}^{2}+o_{p}(1) \xrightarrow{d} \chi_{2 n}^{2}
$$

and other limiting results. It remains to show

$$
T^{-\frac{1}{2}} \sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) u_{i t}^{*} \xrightarrow{d} q_{k i} E_{k i} .
$$

Let $\lambda_{k i}$ be real numbers. We have

$$
T^{-\frac{1}{2}} \sum_{k} \sum_{i} \sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t} u_{i t}^{*}=T^{-\frac{1}{2}} \sum_{t} x_{t}+o_{p}(1),
$$

where $x_{t}=\sum_{k} \sum_{i} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t} u_{i t}^{*}$. Since $\operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) I_{k i t}, i=1, \ldots, n, k=1,2$ are F_{t-1} measurable, $E\left(x_{t} \mid F_{t-1}\right)=0$ and hence x_{t} is a F_{t}-martingale difference. Since $I_{1 i t}, I_{2 i t}$ are orthogonal and $\left\{u_{i t}^{*}, i=1, \ldots, n\right\}$ is a set of uncorrelated random variable with unit variances, $E\left(x_{t}^{2} \mid F_{t-1}\right)=\sum_{k} \sum_{i} \lambda_{k i}^{2} q_{k i}$. Noting $T^{-1} \sum_{t} E\left(x_{t}^{2} \mid F_{t-1}\right) \rightarrow \sum_{k} \sum_{i} \lambda_{k i}^{2} q_{k i}$ and applying a version of martingale central limit theorem, we get $T^{-1 / 2} \sum_{t} x_{t} \xrightarrow{d} N\left(0, \sum_{k} \sum_{i} \lambda_{k i}^{2} q_{k i}\right)$. Therefore, we get $T^{-1 / 2} \sum_{t} \operatorname{sign}\left(y_{i, t-1}-\hat{\mu}_{i, t-1}\right) u_{i t}^{*} \xrightarrow{d} q_{k i} E_{k i}$ from the Cramer-Wold device.

References

Bai, J. and Ng, S. (2004). A PANIC attack on unit roots and cointegration, Econometrica, 72, 1127-1177.
Caner, M. and Hansen, B. E. (2001). Threshold autoregression with a near unit root, Econometrica, 69, 1555-1596.
Choi, I. (2001). Unit root tests for panel data, Journal of International Money and Finance, 20, 249-272.
Choi, I. and Chue, T. K. (2007). Subsampling hypothesis tests for nonstationary panels with applications to exchange rates and stock prices, Journal of Applied Econometrics, 22, 233-264.
Enders, W. and Granger, C. W. J. (1998). Unit root tests and asymmetric adjustment with an example using the term structure of interest rates, Journal of Business \& Economic Statistics, 16, 304-311.
Gengenbach, C., Palm, F. C. and Urbain, J. P. (2010). Panel Unit Root Tests in the Presence of Crosssectional Dependencies: Comparison and Implications for Modelling, Econometric Reviews.
Hansen, B. and Seo, B. (2002). Testing for two-regime threshold cointegration in vector error correction models, Journal of Econometrics, 110, 293-318.
Herce, M. A. (1996). Asymptotic theory of LAD estimation in a unit root process with finite variance errors, Econometric Theory, 12, 129-153.
Herwartz, H. and Siedenburg, F. (2008). Homogenous panel unit root tests under cross sectional dependence: Finite sample modifications and the wild bootstrap, Computational Statistics \& Data Analysis, 53, 137-150.
Huber, P. J. (1981). Robust Statistics, John Wiley \& Sons, New York.
Im, K. S., Pesaran, M. H. and Shin, Y. (2003). Testing for unit roots in heterogeneous panels, Journal of Econometrics, 115, 53-74.
IMSL (1989). User's Manual, IMSL, Houston, Texas.
Koop, G. and Potter, S. M. (1999). Dynamic asymmetries in U.S. unemployment, Journal of Business \& Economic Statistics, 17, 298-312.
Levin, A., Lin, C. and Chu, C. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties, Journal of Econometrics, 108, 1-24
Lucas, A. (1995). Unit root tests based on M estimators, Econometric Theory, 11, 331-346.
Moon, H. R. and Perron, B. (2004). Testing for a unit root in panels with dynamic factors, Journal of Econometrics, 122, 81-126.
Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence, Journal of Applied Econometrics, 22, 265-312.
Phillips, P. C. B. and Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence, Econometrics Journal, 6, 217-259.
Shin, D. W. and Kang, S. (2006). An instrumental variable approach for panel unit root tests under crosssectional dependence, Journal of Econometrics, 134, 215-234.
Shin, D. W. and Lee, O. (2001). Tests for asymmetry in possibly nonstationary time series data, Journal of Business \& Economic Statistics, 19, 233-244.
Shin, D. W. and Lee, O. (2008). Unit root tests for panel MTAR model with cross-sectionally dependent error, Metrika, 67, 315-326.
Shin, D. W., Park, S. J. and Oh, M. S. (2009). A robust sign test for panel unit roots under cross sectional dependence, Computational Statistics \& Data Analysis, 53, 1312-1327.
Shin, D. W. and So, B. S. (1999). Unit root tests based on adaptive maximum likelihood estimation, Econometric Theory, 15, 1-23.

Shin, D. W. and So, B. S. (2001). Recursive mean adjustment for unit root tests, Journal of Time Series Analysis, 22, 595-612.
So, B. S. and Shin, D. W. (2001). An invariant sign test for random walks based on recursive median adjustment, Journal of Econometrics, 102, 197-229.
Tsay, R. S. (2005). Analysis of Financial Time Series, $2^{\text {nd }}$ edition, John Wiley \& Sons, Hoboken, New Jersey.

[^0]: This research was supported by National Research Foundation of Korea (NRF-2009-0084772).
 ${ }^{1}$ Professor, Department of Statistics, Ewha Womens University, Daehyeon-dong, Seodaemun-gu, Seoul 120750, Korea. E-mail: shindw@ewha.ac.kr

