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Abstract

Robust unit root tests are developed for dynamic panels consisting of TAR processes. The test statistics

are all based on diverse combinations of individual t-type tests for significance of TAR coefficients. Limiting

null distributions are established. A Monte-Carlo experiment compares the proposed tests. The tests are

applied to a panel data set of Canadian unemployment rates which show asymmetric features as well as

having outliers.

Keywords: Asymmetry, instrumental variable estimation, robustness, TAR process, unemployment rate,

unit root test.

1. Introduction

During the last decade, testing for panel unit roots have attracted signifficant attention. In the

early years, various tests for cross-sectionally uncorrelated error models were developed by Choi

(2001), Levin et al. (2002), Im et al. (2003), and others. Shortly after these papers, extensions to

models with cross-sectionally correlated errors were made by Phillips and Sul (2003), Bai and Ng

(2004), Moon and Perron (2004), Shin and Kang (2006), and Choi and Chue (2007). Some results

for correlated models were summarized by Pesaran (2007), and others. In the recent years, diverse

studies were made by Herwartz and Siedenburg (2008) for wild bootstrapping, Gengenbach et al.

(2010) for comparative study, and many others.

Robustness is an important issue for testing unit root. Various results are available by Lucas (1995)

for a test based by M -estimator, Herce (1996) for a test constructed from a least absolute devia-

tion(LAD) estimator, Shin and So (1999) for a test obtained by using a semiparametric adaptive

M -estimator, So and Shin (2001) for a sign test, for Shin et al. (2009) for panel sign test.

Dynamic asymmetry is apparent in many economic and finance variables. Many authors argue that

such variables have dynamics different from up-times, that is, the times at that these variables are

increasing, to down-times. Examples of asymmetric variables are unemployment rates that show

patterns depending on the business cycle: rapid deterioration for recession times and slow recovery

for expansion times. See Koop and Potter (1999) and references therein. In addition, many finance

variables such as stock prices and foreign exchange rates show wilder behaviors for big bad news

than for big good news. See Tsay (2005) and references therein.
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Classes of nonstationary TAR(threshold autoregressive) models were generally utilized to represent

such dynamic asymmetry. Koop and Potter (1999) considered diverse TAR models in their Bayesian

analysis of asymmetric features of US unemployment rates. Enders and Granger (1998) and Caner

and Hansen (2001) provided unit root tests for TAR models. More studies were made by Shin

and Lee (2001) for unit root tests and tests for asymmetry, Hansen and Seo (2002) for testing

cointegration, Shin and Lee (2008) for panel unit root tests, and others.

We are interested in robust unit root tests for panel TAR models. Robustness is achieved by

adopting the strategy of Huber (1981) of discounting large errors to smaller ones. Following the

instrumental variable approach of Shin and Kang (2006) for estimating unit root, diverse statistics

are constructed. Standard asymptotic null distributions are established for the statistics. A Monte-

Carlo experiment compares the proposed tests. The proposed tests are applied to a panel data set

of yearly unemployment rates of Canadian provinces which show asymmetric features as well as

outlying observations.

The remaining of the paper is organized as follows. In Section 2, robust tests are proposed and

their limiting null distributions are established. In Section 3, a Monte-Carlo comparison of the

proposed tests is made. In Section 4, a real data set is analyzed. In Section 5, a concluding remark

is provided.

2. A TAR Model and Robust Tests

We are interested in a dynamic panel model given by

zit =

2∑
k=1

ρki(yi,t−1 − µi,t−1)Ikit + uit, (2.1)

t = 1, . . . , T , i = 1, . . . , n, where {yit, t = 1, . . . , T , i = 1, . . . , n} is the set of observations over

n-panel units for time period t = 1, . . . , T , zit = ∆yit = yit − yi,t−1, I1it = I(zi,t−1 > 0) are

the indicator variables for the events(zi,t−1 > 0), I2it = 1 − I1it are indicators for the other

events(zi,t−1 ≤ 0), ρki are unknown autoregressive(AR) parameters, µit are unknown mean func-

tions, and uit are regression errors. The errors uit are allowed to be cross-sectionally dependent. Let

ut = (u1t, . . . , unt)
′. Let Σu = var(ut). For each i, the component series yit is a TAR process whose

AR coefficient is ρ1i for up-times, i.e., times such that yi,t−1 > yi,t−2 and is ρ2i for down-times.

For the time being, we assume given values for µit and Σu for a simple description of the main idea.

Later test statistics are constructed with estimated values. We construct robust tests for the null

hypothesis of unit roots

H0 : ρ1i = ρ2i = 0, for all i = 1, . . . , n,

against the alternative hypothesis H1 : ρki ≤ 0 for all (k, i) and ρki < 0 for at least one (k, i). Let

ρk = (ρk1, . . . , ρkn)
′, k = 1, 2. Let zt = (z1t, . . . , znt)

′ and let

Xkt = diag((y1,t−1 − µ1,t−1)Ik1t, . . . , (yn,t−1 − µn,t−1)Iknt), k = 1, 2.

Then model (1) can be rewritten as

zt = ρ1X1t + ρ2X2t + ut.
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Since X1t and X2t are orthogonal, the ordinary least squares estimator(OLSE) is

ρ̄k =

(∑
t

X ′
ktXkt

)−1(∑
t

X ′
ktzt

)
, k = 1, 2.

Owing to the cross-sectional correlation of zt, the distribution of the OLSE is not free from nuisance

parameters arising from the cross-sectional correlation. In stationary cases, nuisance parameter

dependency is removed if we use the Generalized Least Squares Estimator(GLSE) given by

ρ̃k =

(∑
t

X∗′
ktX

∗
kt

)−1(∑
t

X∗′
ktz

∗
t

)
, k = 1, 2,

where

X∗
kt = ΓuXkt, z∗t = Γuzt = Γuut

and Γu, Γ
′
u are LU decomposition of Σ−1

u such that ΓuΓ
′
u = Σ−1

u .

However, unlike the stationary cases, as pointed out by Phillips and Sul (2003) and Shin and Kang

(2006) for panels of AR processes, the null distributions of test statistics based on the GLSE depend

on the nuisance parameter arising from cross-sectional correlation. Moreover, the tests based on

the GLSE is not robust because the GLSE is sensitive to outlying errors u∗
it which are, under H0,

equal to z∗it.

The object of robustness is achieved by discounting large errors to smaller ones through

z∗Hit = hℓ(z
∗
it),

where

hℓ(x) = −1, if x ≤ −ℓ; hℓ(x) =
x

ℓ
, if |x| < ℓ; hℓ(x) = 1, if x ≥ ℓ

and ℓ ≥ 0 is a real number. The function hℓ was proposed by Huber (1981) and was widely used in

robust estimation.

The object of nuisance-parameter-free asymptotics is achieved by adopting the instrumental variable

(IV) approach of Shin and Kang (2006) with instrument

Hkt = diag

(
hm

(
y1,t−1 − µ1,t−1

σ1

)
Ik1t, . . . , hm

(
yn,t−1 − µn,t−1

σn

)
Iknt

)
= diag(hk1t, . . . , hknt),

where m ≥ 0 is a real number,

hkit = hm

(
yi,t−1 − µi,t−1

σi

)
Ikit,

and σ2
i = var(uit) is the (i, i) component of Σu.

In the instrumental variable, the purpose of using the discounting function hm() is for resolving

nuisance parameter dependency and attaining normality rather than for robustness. Under H0,



14 Dong Wan Shin

as T → ∞, (yi,t−1 − µ1,t−1) is of probabilistic order t1/2 and |(yi,t−1 − µ1,t−1)| > m with high

probability. Therefore, for large T ,∑
t

hm

(
yi,t−1 − µi,t−1

σi

)
Ikitz

∗
it
∼=
∑
t

sign(yi,t−1 − µi,t−1)Ikitz
∗
it, i = 1, . . . , n, k = 1, 2, (2.2)

which are asymptotically independent and standard normal if normalized by T 1/2. See Appendix

for a formal justification.

The resulting robust IV-estimator is

ρ̂k =

(∑
t

HktX
∗
kt

)−1(∑
t

Hktz
∗H
t

)
,

with estimated variance

Vρ̂k =

(∑
t

HktX
∗
kt

)−1(∑
t

HktVz∗HHkt

)(∑
t

X∗′
ktHkt

)−1

,

where z∗Ht = (z∗H1t , . . . , z∗Hnt )′ and Vz∗H is an estimated variance of z∗Ht . Since elements of z∗t are

uncorrelated with zero mean and common variance, so are z∗Ht . Therefore, a natural estimator of

the variance of z∗Ht is

Vz∗H = σ̂∗2In, σ̂∗2 = (nT )−1
n∑

i=1

T∑
t=1

(
z∗Hit

)2
.

Now, the Wald test for H0 is

W =

2∑
k=1

ρ̂′kV
−1
ρ̂k

ρ̂k =

2∑
k=1

(∑
t

Hktz
∗H
t

)′(∑
t

HktVz∗HHkt

)−1(∑
t

Hktz
∗H
t

)
.

Since Hkt is diagonal, so is (
∑

t HktVz∗HHkt). Hence the Wald test for H0 becomes

W =

2∑
k=1

n∑
i=1

(τ̂ki)
2,

where

τ̂ki =
ρ̂ki

se(ρ̂ki)
= (σ̂∗)−1

∑
t hkitz

H
it

(
∑

t h
2
kit)

1
2

,

a t-type test for significance of ρki, where se(ρ̂ki) is the square root of the ith diagonal element

of Vρ̂ki . Taking advantage of the one-sided nature of the testing problem, we obtain the following

modifications of the Wald test

W− =

2∑
k=1

n∑
i=1

{(τ̂ki)−}2

and

W̄− =

2∑
k=1

{(
n∑

i=1

τ̂ki

)−}2

,
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where x− = x if x < 0, x− = 0 if x ≥ 0. Instead of summing squares of τ̂ki, following the averaging

scheme of Im et al. (2003) and the p-value approach of Choi (2001), we obtain the following statistics

τ̄ = (2n)−
1
2

2∑
k=1

n∑
i=1

τ̂ki,

P = −2

2∑
k=1

n∑
i=1

ln(pki),

where

pki = Φ(τ̂ki) is the p-value of τ̂ki,

and Φ is the cumulative distribution of the standard normal distribution.

Since Σu and mean function µit are unknown, they should be replaced by their estimators Σ̂u

and µ̂it. Then τ̂ki =
∑

t hkitz
∗H
it /(

∑
t h

2
kit)

1/2, i = 1, . . . , n, k = 1, 2 are constructed using

z∗t = (z∗1t, . . . , z
∗
nt)

′ = Γ̂uzt and hkit = hm((yi,t−1 − µ̂i,t−1)/σ̂i)Ikit where Γ̂uΓ̂
′
u = Σ̂−1

u is the

LU-decomposition of Σ̂−1
u and σ̂2

i is the (i, i)-element of Σ̂u. The test statistics W, τ̄ , P,W−, W̄−

are constructed using these τ̂ki.

As a H0-consistent estimator of Σu, we may use Σ̂u = T−1∑
t ztz

′
t. This estimator is recommended

in case of large T relative to n because it is positive definite for T > n and is simple to compute.

When n is large, one can construct other estimators based on factor models as adopted by Phillips

and Sul (2003), Moon and Perron (2004) and Bai and Ng (2004). More specifically, estimator

Σ̂u = Σ(θ̂) is constructed using an estimator θ̂ of parameters for a factor model uit =
∑L

ℓ=1 δiℓfℓt+eit
where fℓt are independent zero mean errors having unit variance and eit are independent zero-mean

errors having variance σe
ii independent of fℓt.

The mean function µi,t−1 is recursively estimated in order for
∑

t sign(yi,t−1 − µ̂i,t−1)Ikitz
∗
it of (2)

with estimated mean function µ̂i,t−1 to have a martingale structure, which is essential for asymptotic

normality, see Shin and So (2001) and the Appendix. For models with simple mean µit = µi, we

use µ̂i,t−1 = ȳi,t−1 = (t− 1)−1∑t−1
s=1 yis, the sample average of {yi1, . . . , yi,t−1}, to adjust µi,t−1 in

yi,t−1 −µi,t−1. For models with time trend µit = βi0 +βi1t, we use µ̂i,t−1 = β̄i0,t−1 + β̄i1,t−1(t− 1),

where (β̄i0,t−1, β̄i1,t−1) are the coefficients of (1, s) in the regression of yis on (1, s), s = 1, . . . , t−1.

In the following theorem, limiting null distributions of the test statistics are established.

Theorem 2.1. Consider model (1) with (a) E[hℓ(u
∗
it)|Ft−1] = 0, i = 1, . . . , n, (b) for each i ̸= j,

E[hℓ(u
∗
it)hℓ(u

∗
jt)|Ft−1] = 0, (c) finite Σu, where Ft = σ(yis, s = 1, . . . , t, i = 1, . . . , n) is the σ-

algebra generated by (yis, s = 1, . . . , t, i = 1, . . . , n). Assume that Σ̂u is consistent as T → ∞ and

µ̂i,t−1 is Ft−1-measurable. Then, under H0, as T → ∞, we have

Pr[W ≤ x] → Pr[χ2
2n ≤ x],

Pr[W− ≤ x] →
2n∑
ℓ=0

(2nℓ )0.5nPr[χ2
ℓ ≤ x],

Pr[W̄− ≤ x] →
2∑

ℓ=0

(2ℓ)0.5
2Pr[χ2

ℓ ≤ x],

Pr[τ̄ ≤ x] → Pr[Z ≤ x],

Pr[P ≤ x] → Pr[χ2
4n ≤ x],
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where Z is a standard normal random variable, χ2
ℓ is a chi-square random variable with ℓ degrees

of freedom, and χ2
0 = 0.

Proof. See the Appendix. �

The null distributions of test statistics W and P are asymptotically chi-squared with degrees of

freedom 2n and 4n, respectively, for large T . The limiting null distributions of W− and W̄− are

linear combinations of chi-square distributions which are called chi-bar square distributions. The

statistic τ̄ is asymptotically standard normal under H0. These distributions are free from nuisance

parameters and are valid for both mean-adjusted tests and for trend-adjusted tests as well as for

other adjustments for mean functions.

For serially independent uit, conditions (a) and (b) become

E[hℓ(u
∗
it)] = 0, E[hℓ(u

∗
it)hℓ(u

∗
jt)] = 0,

which are satisfied if uit, i = 1, . . . , n are jointly symmetrically distributed with origin zero. Since

hℓ is an odd function, the distribution of hℓ(u
∗
it) is symmetric about zero satisfying E[hℓ(u

∗
it)] =

0, and the joint distribution of (hℓ(u
∗
1t), . . . , hℓ(u

∗
nt))

′ is symmetric about the origin, satisfying

E[hℓ(u
∗
it)hℓ(u

∗
jt)] = 0.

The parameters ℓ is related with robustness and power of the test statistics. The tests are more

robust for smaller ℓ. If error distributions are not heavy tailed, then the tests are more powerful

for larger ℓ. The parameter m is related with the robustness of sizes of the tests. Sizes are more

stable for smaller m. This issue will be addressed in a Monte-Carlo study in the following section.

3. A Monte Carlo Study

Finite sample size and power properties of the proposed tests are investigated for a model with one

factor error,

zit =
2∑

k=1

ρki(yi,t−1 − µi)Ikit + uit, uit = δift + eit.

We consider 4 errors for uit and ft:

D1 : N(0, 1), the standard normal,

D2 : 0.9N(0, 1) + 0.1N(0, 10), a normal mixture,

D3 : C(0, 1), the standard Cauchy,

D4 : uit = ϵit
√

1 + 0.9u2
i,t−1 and ft = ϵt

√
1 + 0.9f2

t−1, ARCH errors,

where ϵit, ϵt are i.i.d. N(0, 1) errors and uit, ft are independent.

The factor loading coefficients δi are independently generated from U(d0, d1) with (d0, d1) =

(0, 0.5), (1, 3), where U(d0, d1) is the uniform distribution on (d0, d1). The corresponding cases

are denoted by C1, C2, respectively, which correspond to weak and strong cross-sectional correla-

tion, respectively: errors under C1 have average cross-section correlation smaller than 0.1 and errors

under C2 have average cross-section correlation larger than 0.6.
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Table 3.1. Sizes(%) of tests based on 10,000 replications. ρ1i = ρ2i = 0.

n T
ℓ = 0,m = 0 ℓ = 0,m = 2 ℓ = 2,m = 0 ℓ = 2,m = 2

W̄− τ̄ P W− W̄− τ̄ P W− W̄− τ̄ P W− W̄− τ̄ P W−

uit, ft ∼ N(0, 1)

C1 5 50 4.8 4.8 4.8 4.7 7.4 7.8 7.4 6.5 4.5 4.8 4.5 4.4 7.6 8.5 7.7 6.7

C1 20 50 3.9 3.9 4.0 4.1 8.1 8.8 8.5 7.3 3.7 3.4 3.9 4.1 8.7 9.5 9.6 8.5

C1 5 100 4.8 4.7 4.4 4.5 6.2 6.3 6.1 5.8 4.5 4.5 4.5 4.5 6.6 6.9 6.7 6.2

C1 20 100 4.2 4.5 4.6 4.7 7.2 8.0 7.6 7.1 4.3 4.4 4.4 4.5 8.2 8.6 8.8 8.0

C2 5 50 4.6 4.6 4.7 4.7 6.1 6.6 5.9 5.3 4.6 4.6 4.5 4.2 6.4 6.7 5.9 5.2

C2 20 50 4.6 4.5 4.4 4.3 6.8 6.9 6.5 5.6 4.5 4.8 4.3 4.0 7.3 7.8 7.1 6.0

C2 5 100 4.8 4.9 4.8 4.9 5.8 6.2 5.8 5.5 4.7 5.0 4.9 4.9 5.9 6.3 5.7 5.8

C2 20 100 4.8 4.8 4.5 4.6 6.1 6.7 6.4 5.9 4.4 4.7 4.5 4.4 6.4 7.0 6.7 6.3

uit, ft ∼ 0.9N(0, 1) + 0.1N(0, 10)

C1 5 50 4.9 5.2 5.0 4.9 7.0 7.7 7.0 6.4 5.2 5.1 5.0 4.8 7.8 8.3 7.9 7.1

C1 20 50 4.2 4.4 4.7 4.6 7.7 8.6 8.9 7.8 3.7 3.7 4.4 4.5 8.6 9.1 9.8 8.8

C1 5 100 5.2 5.2 5.2 5.1 6.6 6.6 6.8 6.4 5.0 5.0 5.2 5.3 7.2 7.5 7.3 6.9

C1 20 100 4.8 4.9 5.1 5.0 7.6 8.3 7.9 7.3 4.5 4.3 4.8 5.0 8.0 8.5 8.8 8.2

C2 5 50 4.5 4.8 4.4 4.7 5.9 6.2 5.8 5.2 4.5 4.8 4.7 4.7 6.2 6.4 6.4 5.9

C2 20 50 5.2 5.4 5.0 4.8 7.3 7.8 6.9 5.8 4.9 4.7 4.9 4.6 7.2 8.0 7.3 6.3

C2 5 100 4.6 4.9 4.7 4.8 5.8 5.8 5.6 5.4 4.7 4.9 4.8 4.7 6.3 6.3 6.1 5.9

C2 20 100 5.4 5.1 4.8 4.5 6.7 6.7 6.4 5.8 5.1 4.9 4.7 4.6 6.8 6.9 6.8 6.2

uit, ft ∼ C(0, 1)

C1 5 50 4.8 4.5 4.5 4.6 5.3 5.4 4.8 4.5 4.5 4.6 5.3 5.8 5.4 5.9 6.6 6.9

C1 20 50 4.9 4.6 4.6 4.6 6.4 6.6 6.3 5.3 4.6 4.2 5.1 6.0 6.5 6.6 6.7 7.5

C1 5 100 4.7 4.7 4.7 4.6 5.2 5.4 5.2 4.8 5.0 4.6 5.6 6.3 5.4 5.9 6.5 7.1

C1 20 100 5.4 5.0 5.3 5.3 6.9 6.7 6.7 6.3 5.0 4.6 5.9 7.2 6.7 7.3 8.2 9.3

C2 5 50 5.0 5.0 5.0 4.9 5.8 5.9 5.6 5.3 5.0 5.2 5.5 5.9 6.1 6.2 6.8 7.2

C2 20 50 7.6 7.1 6.6 5.9 9.3 8.6 7.8 6.4 5.9 5.9 6.1 5.9 7.9 7.8 7.6 7.6

C2 5 100 5.6 5.3 4.8 4.9 5.9 5.8 5.6 5.2 5.1 5.0 5.5 6.2 6.0 5.5 6.3 7.4

C2 20 100 9.9 8.6 8.2 6.9 11.6 10.5 9.4 7.8 7.6 7.2 7.3 7.7 9.7 9.1 9.3 9.1

uit = ϵit
√

1 + 0.9u2
i,t−1, ft = ϵt

√
1 + 0.9f2

t−1, ϵit, ϵt ∼ N(0, 1)

C1 5 50 4.7 4.7 4.6 4.7 7.4 7.7 7.0 6.3 4.6 4.4 4.4 4.3 9.6 9.7 11.0 10.8

C1 20 50 4.4 4.2 4.3 4.4 8.7 9.7 9.5 8.2 4.0 3.8 3.8 3.8 11.0 11.4 15.3 15.1

C1 5 100 5.1 5.3 5.3 5.3 6.6 6.9 6.9 6.5 5.3 5.2 5.3 5.3 8.4 8.8 9.4 9.1

C1 20 100 4.6 4.5 4.4 4.6 8.0 8.4 8.2 7.2 4.6 4.3 4.2 4.3 10.2 10.4 12.6 12.8

C2 5 50 5.3 5.1 4.8 4.5 7.1 7.0 6.2 5.4 5.2 5.2 4.9 4.7 8.4 8.5 8.6 7.8

C2 20 50 5.7 5.1 5.3 5.1 7.8 7.8 7.0 6.1 5.1 4.6 4.7 4.4 8.2 8.5 9.0 8.0

C2 5 100 5.4 5.2 5.1 5.0 6.8 6.7 6.4 6.0 5.4 5.3 5.0 5.1 7.5 7.8 7.8 7.3

C2 20 100 6.7 6.2 5.8 5.5 8.7 8.2 7.6 6.9 6.3 5.6 5.2 5.0 8.9 8.4 8.7 8.1

Note: uit = δift + ϵit, δi ∼ U(0, 0.5) for C1, δi ∼ U(1, 3) for C2

The autoregressive parameters are generated as: ρ1i = ρ2i = 0 for size study and ρ1i ∼ U(−0.1, 0),

ρ2i ∼ U(−0.2, 0) for power study. The other parameters are set to: n = 5, 20; T = 50, 100.

In simulating data yit, standard normal, standard Cauchy, and uniform errors are generated by

IMSL (1989) FORTRAN subroutines RNNOA, RNCHY, RNUN, respectively. Initial values yit
and others for t = 0 are all set to zero.

We choose ℓ = 0, 2;m = 0, 2. We use Σ̂u = T−1∑
t ztz

′
t and use mean adjustments µ̂i,t−1 = ȳi,t−1.

Rejected percentages of level 5% tests out of 10,000 replications are reported in Tables 3.1, 3.2.
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Table 3.2. Powers (%) of tests based on 10,000 replications. ρ1i ∼ U(−0.1, 0), ρ2i ∼ U(−0.2, 0).

n T
ℓ = 0,m = 0 ℓ = 0,m = 2 ℓ = 2,m = 0 ℓ = 2,m = 2

W̄− τ̄ P W− W̄− τ̄ P W− W̄− τ̄ P W− W̄− τ̄ P W−

uit, ft ∼ N(0, 1)

C1 5 50 31.1 33.8 29.6 22.3 49.5 53.6 46.4 35.5 43.5 47.7 39.8 30.0 67.9 73.0 64.9 50.5

C1 20 50 69.0 72.6 63.0 47.0 91.1 93.3 87.8 72.7 86.9 89.6 81.0 62.7 98.9 99.3 97.9 90.4

C1 5 100 63.7 67.6 62.1 51.6 82.1 84.2 81.2 71.3 82.9 85.4 81.8 70.9 95.1 96.6 95.3 90.3

C1 20 100 98.6 99.1 98.1 93.1 100. 100. 99.9 99.3 100. 100. 99.9 99.3 100. 100. 100. 100.0

C2 5 50 19.7 20.3 21.6 20.2 28.3 28.7 31.5 28.8 26.3 26.3 29.6 27.1 39.1 38.7 45.7 43.2

C2 20 50 28.0 28.5 32.5 29.7 42.5 42.8 51.4 47.0 39.1 38.6 47.5 45.3 57.5 56.6 70.6 68.9

C2 5 100 38.0 36.8 45.8 45.3 50.3 48.5 61.8 61.0 50.9 48.1 62.5 62.6 64.0 61.5 79.6 80.1

C2 20 100 63.0 58.6 78.0 78.9 76.8 72.8 91.4 92.5 77.2 72.6 92.4 93.7 88.0 85.0 98.5 98.9

uit, ft ∼ 0.9N(0, 1) + 0.1N(0, 10)

C1 5 50 39.9 43.3 38.3 30.5 60.9 64.8 59.4 47.7 48.0 51.6 44.4 34.5 72.8 77.4 70.4 57.7

C1 20 50 77.8 81.7 73.5 57.6 95.7 96.9 94.3 84.5 88.3 91.3 83.9 66.4 99.3 99.6 98.7 93.1

C1 5 100 76.5 79.7 76.0 66.5 90.9 92.7 91.4 85.5 86.9 89.7 86.5 77.2 97.3 98.2 97.5 94.2

C1 20 100 99.8 99.9 99.8 98.3 100. 100. 100. 100. 100. 100. 100. 99.7 100. 100. 100. 100.0

C2 5 50 23.5 23.9 27.0 25.4 34.9 35.3 40.2 37.7 28.3 28.4 33.0 31.0 42.7 42.5 50.6 48.3

C2 20 50 35.1 35.2 42.4 40.2 49.0 49.3 61.3 58.8 42.8 42.2 53.5 51.0 60.5 59.2 74.8 74.7

C2 5 100 46.3 44.5 57.0 56.6 59.4 57.4 73.5 74.0 54.8 52.3 67.7 68.2 68.4 66.0 84.2 84.9

C2 20 100 71.8 67.7 87.5 88.9 83.7 80.1 96.4 97.0 80.8 76.7 95.3 96.0 90.7 87.7 99.0 99.2

uit, ft ∼ C(0, 1)

C1 5 50 74.6 76.8 82.0 79.1 90.3 91.0 95.4 94.5 55.0 58.2 55.6 46.9 84.1 86.0 87.5 81.6

C1 20 50 91.6 92.6 96.1 94.8 97.8 97.8 99.3 99.4 82.3 84.2 85.4 75.3 96.6 96.6 98.7 97.9

C1 5 100 91.9 92.1 97.2 97.3 97.1 96.7 99.3 99.4 89.1 90.6 91.3 87.7 97.2 96.9 99.0 98.7

C1 20 100 99.2 98.8 99.9 100. 99.4 99.1 100. 100. 98.5 98.4 99.4 99.2 99.2 99.0 99.9 99.9

C2 5 50 53.0 53.4 67.3 68.4 68.0 68.3 84.1 85.5 38.8 39.1 46.9 44.8 59.7 58.6 74.5 73.0

C2 20 50 62.2 61.2 81.7 84.6 75.7 74.5 92.6 95.4 51.8 50.2 67.7 66.2 71.3 68.7 90.0 91.3

C2 5 100 76.4 75.0 90.5 92.2 85.3 84.0 96.4 97.1 67.3 66.1 80.3 79.8 82.1 79.3 94.8 95.5

C2 20 100 87.7 84.6 98.3 99.2 91.5 88.6 99.1 99.5 82.4 79.5 95.0 95.9 89.7 86.6 98.7 99.3

uit = ϵit
√

1 + 0.9u2
i,t−1, ft = ϵt

√
1 + 0.9f2

t−1, ϵit, ϵt ∼ N(0, 1)

C1 5 50 33.7 36.5 32.4 26.2 54.6 59.0 53.4 42.8 41.2 44.3 37.5 27.8 69.7 71.6 70.3 61.0

C1 20 50 67.7 70.8 63.5 49.2 91.5 93.4 89.2 77.1 82.5 85.0 77.0 58.5 98.1 98.5 98.3 94.3

C1 5 100 68.1 71.0 67.4 58.5 87.1 89.0 86.9 79.3 79.3 81.9 78.4 67.8 94.1 94.8 95.0 91.1

C1 20 100 98.7 99.1 98.6 94.8 99.9 99.9 99.9 99.7 99.8 99.9 99.8 98.8 100. 99.9 100. 100.0

C2 5 50 22.4 22.8 24.9 23.0 33.8 33.6 37.9 35.7 27.4 27.2 30.2 28.5 43.9 42.8 52.8 51.1

C2 20 50 33.4 33.7 39.9 37.6 49.7 49.1 59.2 56.8 42.4 41.8 51.0 47.7 62.1 60.6 77.0 77.2

C2 5 100 44.1 42.9 52.6 51.4 59.3 56.1 70.8 70.1 53.2 50.9 63.4 62.1 69.6 66.0 83.0 83.1

C2 20 100 67.3 63.7 83.0 83.9 80.0 76.4 94.1 95.4 77.8 74.2 92.4 93.1 88.8 85.8 98.5 98.9

Note: uit = δift + ϵit, δi ∼ U(0, 0.5) for C1, δi ∼ U(1, 3) for C2

The size results are reported in Table 3.1. We see that all the four tests W̄−, τ̄ , P, W− have similar

size performances. The table show us stable null behaviors of the proposed tests whose empirical

size values are reasonably close to the nominal level 5% except for a few cases of ℓ = m = 2. The

tests corresponding to m = 0 have size values very close to 5% under all cases considered here. The

tests corresponding to m = 2 are slightly oversized, especially under ARCH error.

The strong cross-sectional dependence corresponding to C2 does not prevent the proposed tests

from having good size values. Size performances are similar for all (n, T ) considered here except for

a few cases.
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Under the well-behaved standard normal error D1 and moderately outlying errors of the normal

mixture error D2, size values of all the tests seem good. Even under the outlying Cauchy errors

D3 in which covariance matrix Σu does not exist, rotation by the sample covariance matrix Σ̂u

is successful in resolving cross-section dependence of C2, producing stable size values of the tests

except for (n = 20, T = 100, m = 2). Under ARCH error of D4, sizes are all good except for

(ℓ,m) = (2, 2).

Power performances of the tests are reported in Table 3.2. We see that powers are sensitive to

ℓ,m. Relative power performances vary according to error distributions depending on whether

error variances are finite as in D1, D2, D4 or infinite as in D3.

For the normal error D1, as expected, tests with (ℓ,m) = (2, 2) seem to have the highest powers.

The tests with (ℓ,m) = (2, 2) still seem to hold a power advantage over tests with other (ℓ,m) for

the moderately outlying normal mixture error D2 and ARCH errors D4. For errors D1, D2 and

D4, tests with (ℓ,m) = (0, 2) seem to have better powers than the tests with (ℓ,m) = (0, 0), (2, 0).

However, we should note that the high power values of tests with (ℓ,m) = (0, 2), (2, 2) due in part to

the oversizes as seen in Table 3.1. If the oversizes are adjusted, the tests with (ℓ,m) = (0, 2), (2, 2)

would lose much of their power advantages over the tests with (ℓ,m) = (2, 0). We may say that tests

with (ℓ,m) = (2, 0) have powers comparable to those with (ℓ,m) = (0, 2), (2, 2). For the outlying

Cauchy error D3, tests with (ℓ,m) = (0, 2) have highest power values.

Relative performances of the four tests vary according to cross-section dependence structure. For

the weakly dependent case of C1, the test τ̄ seem to have the highest powers. For the strongly

dependent case of C2, the two tests P,W− have higher powers than the other tests.

Combining the size results and power results we conclude the following: for the finite variance

errors, tests with (ℓ,m) = (2, 0) are best in that they have best size performance and have powers

not worse than tests with other (ℓ,m) considered here; for the infinite variance error, tests with

(ℓ,m) = (0, 2) are best; if cross-section dependence is not strong, the test τ̄ performs better than

the other three tests. If cross-section dependence is strong, the tests P,W− perform better than

the other two tests.

4. An Example

The proposed tests are illustrated by analyzing a panel data set of 10 Canadian provinces. Annual

unemployment rates(%) for the period of 1976–2009 are depicted in Figure 4.1. The data set is

obtained from Statistics Canada. We have n = 10, T = 34.

Many people argued that data generating processes of unemployment rates are nonstationary. The

classical Dickey-Fuller tests are not usually rejected. Some people such as Caner and Hansen (2001)

claimed that unemployment rates are better modelled by stationarity than nonstationarity if we

allow asymmetry via TAR models. This issue will be investigated in panel context for the Canadian

unemployment rates.

In Figure 4.2, the differences of the state unemployment rates are displayed. The figure reveals

apparent asymmetric features that positive peaks are sharper than negative peaks. This is related

with the asymmetry of the business cycle where recessions are usually sharper than expansions.

Moreover, some sharp increases indicate that the distributions are heavier tailed than normal dis-

tributions. For examples, in the year 1982, three provinces(BC, MB, QC) have unemployment

increases greater than the corresponding (sample mean + 3 × sample standard deviation). The
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Figure 4.1. Canadian regional unemployment rates(%)

Figure 4.2. Canadian regional unemployment rate changes(%)

average of sample correlation coefficients of all the pairs of the differenced series is 0.626. This

average value is considerably large, indicating a strong cross-sectional correlation. These observa-

tions motivate us to use the proposed robust tests taking account asymmetry and cross-sectional

correlation.

Test statistics as well as their p-values are provided in Table 4.1 for values of ℓ,m = 0, 2. In

computing the test statistics, simple means are adjusted and Σ̂u = T−1∑
t ztz

′
t are used. For all

ℓ,m considered here, all statistics have p-values greater than 0.1 indicating presence of unit roots.

Even if asymmetry is allowed, our analysis is in favor of nonstationarity of the data generating
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Table 4.1. Panel unit root tests for yearly Canadian provincial unemployment rates.

ℓ m W̄− p-value τ̄ p-value P p-value W− p-value

0 0 .00 .75 1.81 .96 27.77 .93 4.46 .89

0 2 .50 .44 .80 .79 32.94 .78 6.32 .75

2 0 .00 .75 1.46 .93 31.15 .84 7.26 .67

2 2 .33 .49 .36 .64 35.66 .67 6.78 .71

process of the unemployment rates rather than stationarity.

5. Conclusion

Robust unit root tests are developed for panel data sets having asymmetric and outlying aspects.

Asymmetry is addressed by employing a TAR model and robustness is attained by adopting the

discounting principle of Huber (1981) for robust M -estimation. The test statistics have standard

limiting null distributions which are simple functions of standard normal distributions. A Monte-

Carlo experiment is conducted to investigate sizes and powers of the proposed tests in diverse

situations of error distributions and tuning parameters ℓ,m. A Canadian regional unemployment

rate data set is analyzed by the proposed test statistics, revealing evidence for unit roots.

Appendix : Proof of Theorem 1.

Under H0, for each i, yit is a random walk and is of probabilistic order t1/2. Therefore, according

to Lemma 1(b) of Shin and Lee (2001), ĥkit
∼= sign(yi,t−1 − µ̂i,t−1)Ikit in that∑

t

ĥ2
kit =

∑
t

{sign(yi,t−1 − µ̂i,t−1)Ikit}2 + op(T ) =
∑
t

Ikit + op(T )

and that, together with consistency of Σ̂u,∑
t

ĥkitẑ
∗
it =

∑
t

sign(yi,t−1 − µ̂i,t−1)Ikitu
∗
it + op

(
T

1
2

)
.

Therefore, by the law of large numbers,

T−1
∑
t

ĥ2
kit = T−1

∑
t

Ikit + op(T )
p→ qki,

where qki = E(Ikit) = P (zit > 0). We show that T−1/2∑
t sign(yi,t−1 − µ̂i,t−1)u

∗
it

d→ qkiEki,

where Eki, i = 1, . . . , n, k = 1, 2 are independent standard normal random variables. Then

τ̂ki = (
∑

t h
2
kit)

−1/2∑
t ĥkitẑ

∗
it

d→ Eki. Therefore, we get

W =
∑
k

∑
i

τ̂2
ki =

∑
k

∑
i

E2
ki + op(1)

d→ χ2
2n

and other limiting results. It remains to show

T− 1
2

∑
t

sign(yi,t−1 − µ̂i,t−1)u
∗
it

d→ qkiEki.

Let λki be real numbers. We have

T− 1
2

∑
k

∑
i

∑
t

sign(yi,t−1 − µ̂i,t−1)Ikitu
∗
it = T− 1

2

∑
t

xt + op(1),
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where xt =
∑

k

∑
i sign(yi,t−1 − µ̂i,t−1)Ikitu

∗
it. Since sign(yi,t−1 − µ̂i,t−1)Ikit, i = 1, . . . , n, k = 1, 2

are Ft−1 measurable, E(xt| Ft−1) = 0 and hence xt is a Ft-martingale difference. Since I1it, I2it
are orthogonal and {u∗

it, i = 1, . . . , n} is a set of uncorrelated random variable with unit variances,

E(x2
t | Ft−1) =

∑
k

∑
i λ

2
kiqki. Noting T−1∑

t E(x2
t | Ft−1) →

∑
k

∑
i λ

2
kiqki and applying a version

of martingale central limit theorem, we get T−1/2∑
t xt

d→ N(0,
∑

k

∑
i λ

2
kiqki). Therefore, we get

T−1/2∑
t sign(yi,t−1 − µ̂i,t−1)u

∗
it

d→ qkiEki from the Cramer-Wold device.
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