DOI QR코드

DOI QR Code

cAMP antagonizes ERK-dependent antiapoptotic action of insulin

  • Cui, Zhi Gang (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Hong, Na-Young (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Guan, Jian (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Lee, Dae-Ho (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Lee, Young-Ki (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University) ;
  • Park, Deok-Bae (Department of Medicine, School of Medicine and Institute of Medical Science, Jeju National University)
  • Received : 2010.11.29
  • Accepted : 2010.12.17
  • Published : 2011.03.31

Abstract

Insulin has antiapoptotic activity in various cell types. However, the signaling pathways underlying the antiapoptotic activity of insulin is not yet known. This study was conducted to determine if cAMP affects the antiapoptotic activity of insulin and the activity of PI3K and ERK in CHO cells expressing human insulin receptors (CHO-IR). Insulin-stimulated ERK activity was completely suppressed by cAMP-elevating agents like as pertussis toxin (Ptx) and cholera toxin (Ctx) after 4 h treatment. Insulin-stimulated PKB/Akt activity was not affected at all. Ptx treatment together with insulin increased the number of apoptotic cells and the degree of DNA fragmentation. Ctx or 8-br-cAMP treatment also increased the number of apoptotic cells and stimulated the cleavage of caspase-3 and the hydrolysis of PARP. Taken together, cAMP antagonizes the antiapoptotic activity of insulin and the main target molecule of cAMP in this process is likely ERK, not PI3K-dependent PKB/Akt.

Keywords

References

  1. Cheatham, B. and Kahn C. R. (1995) Insulin action andthe insulin signaling network. Endocr. Rev. 16, 117-142.
  2. Desbois-Mouthon, C., Cadoret, A., Blivet-Van Eggelpoel,M. J., Bertrand, F., Caron. M., Atfi. A., Cherqui, G. andCapeau, J. (2000) Insulin-mediated cell proliferation andsurvival involve inhibition of c-Jun N-terminal kinasesthrough a phosphatidylinositol 3-kinase- and mitogen-activatedprotein kinase phosphatase-1-dependent pathway.Endocrinology 141, 922-931. https://doi.org/10.1210/en.141.3.922
  3. Kaifu, K., Kiyomoto, H., Hitomi, H., Matsubara, K., Hara,T., Moriwaki, K., Ihara, G., Fujita, Y., Sugasawa, N.,Nagata, D., Nishiyama, A. and Kohno, M. (2009) Insulinattenuates apoptosis induced by high glucose via thePI3-kinase/Akt pathway in rat peritoneal mesothelial cells.Nephrol. Dial. Transplant. 24, 809-815.
  4. Teshima, Y., Takahashi, N., Thuc, L. C., Nishio, S.,Nagano-Torigoe, Y., Miyazaki, H., Ezaki, K., Yufu, K,,Hara, M., Nakagawa, M. and Saikawa, T. (2010) High-glucosecondition reduces cardioprotective effects of insulinagainst mechanical stress-induced cell injury. Life Sci. 87,154-161. https://doi.org/10.1016/j.lfs.2010.06.006
  5. Lee-Kwon, W., Park, D., Baskar, P. V., Kole, S. and Bernier,M. (1998) Antiapoptotic signaling by the insulin receptorin Chinese hamster ovary cells. Biochemistry 37, 15747-15757. https://doi.org/10.1021/bi9805947
  6. Park, D., Pandey, S. K., Maksimova, E., Kole, S. and Bernier,M. (2000) Akt-dependent antiapoptotic action of insulin issensitive to farnesyltransferase inhibitor. Biochemistry 39,12513-12521. https://doi.org/10.1021/bi000995y
  7. Kang, S., Song, J., Kang, H., Kim, S., Lee, Y. and Park, D. (2003) Insulin can block apoptosis by decreasing oxidativestress via phosphatidylinositol 3-kinase- and extra-cellularsignal-regulated protein kinase-dependent signalingpathways in HepG2 cells. Eur. J. Endocrinol. 148, 147-155. https://doi.org/10.1530/eje.0.1480147
  8. Signore, A., Annovazzi, A., Gradini, R., Liddi, R. andRuberti, G. (1998) Fas and Fas ligand-mediated apoptosisand its role in autoimmune diabetes. Diabetes Metab.Rev. 14, 197-206. https://doi.org/10.1002/(SICI)1099-0895(1998090)14:3<197::AID-DMR213>3.0.CO;2-G
  9. Srinivasan, S., Stevens, M. J., Sheng, H., Hall, K. E. andWiley, J. W. (1998) Serum from patients with type 2 diabeteswith neuropathy induces complement-independent,calcium-dependent apoptosis in cultured neuronal cells. J.Clin. Invest. 102, 1454-1462. https://doi.org/10.1172/JCI2793
  10. Krupinski, J., Rajaram, R., Lakonishok, M., Benovic, J. L.and Cerione, R. A. (1988) Insulin-dependent phosphorylationof GTP-binding proteins in phospholipid vesicles.J. Biol. Chem. 263, 12333-12341.
  11. Okamoto, T., Okamoto, T., Murayama, Y., Hayashi, Y.,Ogata, E. and Nishimoto, I. (1994) GTP-binding protein-activator sequences in the insulin receptor. FEBS Lett.340, 292-293. https://doi.org/10.1016/0014-5793(94)80157-6
  12. Harris, I. S., Treskov, I., Rowley, M. W., Heximer, S.,Kaltenbronn, K., Finck, B. N., Gross, R. W., Kelly, D. P.,Blumer, K. J. and Muslin, A. J. (2004) G-protein signalingparticipates in the development of diabetic cardiomyopathy.Diabetes 53, 3082-3090. https://doi.org/10.2337/diabetes.53.12.3082
  13. Richardson, M. D., Kilts, J. D. and Kwatra, M. M. (2004)Increased expression of Gi-coupled muscarinic acetylcholinereceptor and Gi in atrium of elderly diabetic subjects.Diabetes 53, 2392-2396. https://doi.org/10.2337/diabetes.53.9.2392
  14. Hashim, S., Li, Y., Nagakura, A., Takeo, S. and Anand-Srivastava, M. B. (2004) Modulation of G-protein expressionand adenylyl cyclase signaling by high glucose invascular smooth muscle. Cardiovasc. Res. 63, 709-718. https://doi.org/10.1016/j.cardiores.2004.04.021
  15. Scherrer, U., Randin, D., Vollenweider, P., Vollenweider,L. and Nicod, P. (1994) Nitric oxide release accounts forinsulin's vascular effects in humans. J. Clin. Invest. 94,2511-2515. https://doi.org/10.1172/JCI117621
  16. Baron, A. D. and Clark, M. G. (1997) Role of blood flowin the regulation of muscle glucose uptake. Annu. Rev.Nutr. 17, 487-499. https://doi.org/10.1146/annurev.nutr.17.1.487
  17. Konopatskaya, O., Shore, A. C., Tooke, J. E. and Whatmore,J. L. (2005) A role for heterotrimeric GTP-binding proteinsand ERK1/2 in insulin-mediated, nitric-oxide-dependent,cyclic GMP production in human umbilical vein endothelialcells. Diabetologia 48, 595-604. https://doi.org/10.1007/s00125-004-1653-7
  18. Morris, A. J. and Malbon, C. C. (1999) Physiological regulationof G protein-linked signaling. Physiol. Rev. 79,1373-1430.
  19. Li, H. S., Shome, K., Rojas, R., Rizzo, M. A., Vasudevan,C., Fluharty, E., Santy, L. C., Casanova, J. E. and Romero,G. (2003) The guanine nucleotide exchange factor ARNOmediates the activation of ARF and phospholipase D byinsulin. BMC Cell Biol. 4, 13. https://doi.org/10.1186/1471-2121-4-13
  20. Kanzaki, M., Watson, R. T., Artemyev, N. O. and Pessin,J. E. (2000) The trimeric GTP-binding protein (G(q)/G(11))alpha subunit is required for insulin-stimulated GLUT4translocation in 3T3L1 adipocytes. J. Biol. Chem. 275,7167-7175. https://doi.org/10.1074/jbc.275.10.7167
  21. Lodhi, I. J., Chiang, S. H., Chang, L., Vollenweider, D.,Watson, R. T., Inoue, M., Pessin, J. E. and Saltiel, A. R.(2007) Gapex-5, a Rab31 guanine nucleotide exchangefactor that regulates Glut4 trafficking in adipocytes. CellMetab. 5, 59-72. https://doi.org/10.1016/j.cmet.2006.12.006
  22. Kanoh, Y., Ishizuka, T., Morita, H., Ishizawa, M., Miura,A., Kajita, K., Kimura, M., Suzuki, T., Sakuma, H. andYasuda, K. (2000) Effect of pertussis toxin on insulin-induced signal transduction in rat adipocytes andsoleus muscles. Cell Signal. 12, 223-232. https://doi.org/10.1016/S0898-6568(99)00081-9
  23. Basso, A. D., Kirschmeier, P. and Bishop, W. R. (2006)Lipid posttranslational modifications. Farnesyl transferaseinhibitors. J. Lipid. Res. 47, 15-31. https://doi.org/10.1194/jlr.R500012-JLR200
  24. Yan, J., Roy, S., Apolloni, A., Lane, A. and Hancock, J. F.(1998) Ras isoforms vary in their ability to activate Raf-1and phosphoinositide 3-kinase. J. Biol. Chem. 273,24052-24056. https://doi.org/10.1074/jbc.273.37.24052
  25. Cohen, E. E., Lingen, M. W., Zhu, B., Zhu, H., Straza, M.W., Pierce, C., Martin, L. E. and Rosner, M. R. (2006)Protein kinase C zeta mediates epidermal growth factor-induced growth of head and neck tumor cells by regulatingmitogen-activated protein kinase. Cancer Res. 66,6296-6303. https://doi.org/10.1158/0008-5472.CAN-05-3139
  26. Tao, J., Malbon, C. C. and Wang, H. Y. (2001) Galpha(i2)enhances insulin signaling via suppression of protein-tyrosinephosphatase 1B. J. Biol. Chem. 276, 39705-39712. https://doi.org/10.1074/jbc.M105216200
  27. Gerits, N., Kostenko, S., Shiryaev, A., Johannessen, M.and Moens, U. (2008) Relations between the mitogen-activatedprotein kinase and the cAMP-dependent proteinkinase pathways: comradeship and hostility. Cell Signal.20, 1592-1607 https://doi.org/10.1016/j.cellsig.2008.02.022
  28. Vuchak, L. A., Tsygankova, O. M., Prendergast, G. V. andMeinkoth, J. L. (2009) Protein kinase A and B-Raf mediateextracellular signal-regulated kinase activation by thyrotropin.Mol. Pharmacol. 76, 1123-1129. https://doi.org/10.1124/mol.109.060129
  29. Shelton, J. G., Chang, F., Lee, J. T., Franklin, R. A.,Steelman, L. S. and McCubrey, J. A. (2004) B-raf and insulinsynergistically prevent apoptosis and induce cell cycleprogression in hematopoietic cells. Cell Cycle 3, 189-196.
  30. Li, F., Wang, D., Zhou, Y., Zhou, B., Yang, Y., Chen, H.and Song, J. (2008) Protein kinase A suppresses the differentiationof 3T3-L1 preadipocytes. Cell Res. 18, 311-323. https://doi.org/10.1038/cr.2008.12
  31. Hanson, M. S., Stephenson, A. H., Bowles, E. A. andSprague, R. S. (2010) Insulin inhibits human erythrocytecAMP accumulation and ATP release: role of phosphodiesterase3 and phosphoinositide 3-kinase. Exp. Biol.Med. 235, 256-262. https://doi.org/10.1258/ebm.2009.009206
  32. Crissman, H. A. and Steinkamp, J. A. (1973) Rapid, simultaneousmeasurement of DNA, protein, and cell volumein single cells from large mammalian cell populations. J.Biol. Chem. 59, 766-771.

Cited by

  1. Arsenic hexoxide enhances TNF-α-induced anticancer effects by inhibiting NF-κB activity at a safe dose in MCF-7 human breast cancer cells vol.31, pp.5, 2014, https://doi.org/10.3892/or.2014.3085
  2. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells vol.62, 2013, https://doi.org/10.1016/j.fct.2013.08.085