DOI QR코드

DOI QR Code

Stray Light Analysis of High Resolution Camera for a Low-Earth-Orbit Satellite

  • Park, Jun-Oh (Division of Electronics, Computer and Communication, Hanseo University) ;
  • Jang, Won-Kweon (Division of Electronics, Computer and Communication, Hanseo University) ;
  • Kim, Seong-Hui (Department of Satellite Optics Technology, Korea Aerospace Research Institute) ;
  • Jang, Hong-Sul (Department of Satellite Optics Technology, Korea Aerospace Research Institute) ;
  • Lee, Seung-Hoon (Department of Satellite Optics Technology, Korea Aerospace Research Institute)
  • Received : 2010.12.07
  • Accepted : 2011.02.15
  • Published : 2011.03.25

Abstract

We discuss the effect of stray light on a high-precision camera in an LEO(Low Earth Orbit) satellite. The critical objects and illumination objects were sorted to discover the stray light sources in the optical system. Scatter modeling was applied to determine a noise effect on the surface of a detector, and the relative flux of a signal and noise were also calculated. The stable range of reflectivity of the beam splitter was estimated for various scattering models.

Keywords

References

  1. G. L. Peterson, “Stray light calculation methods with opticalray trace software,” Proc. SPIE 3780, 132-137 (1999). https://doi.org/10.1117/12.363770
  2. M. M. Talha, J. Chang, Y. Wang, T. Zhang, D. Cheng, andZ. H. Sun, “Design, tolerancing and stray light analyses ofa freeform HMD optical system,” Optik 121, 750-755 (2010). https://doi.org/10.1016/j.ijleo.2008.11.005
  3. Y. Kim, P. D. Bisschop, and G. Vandenberghe, “Characterizationof stray light of ArF lithographic tools: modeling ofpower spectral density of an optical pupil,” Microelectron.Eng. 83, 643-646 (2006). https://doi.org/10.1016/j.mee.2006.01.156
  4. M. S. Scholl and G. Paez, “Cancellation of star light generatedby a nearby star-planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. & Tech. 40,357-365 (1999). https://doi.org/10.1016/S1350-4495(99)00025-0
  5. S. Iqbal, M. M. S. Gualini, and A. Asundi, “Measurementaccuracy of lateral-effect position-sensitive devices in presenceof stray illumination noise,” Sens. Actuators A 143, 286-292(2008). https://doi.org/10.1016/j.sna.2007.11.015
  6. X. Xia, Y. Shuai, and H. Tan, “Calculation techniqueswith the Monte Carlo method in stray radiation evaluation,”J. Quant. Spectron. & Rad. Trans. 95, 101-111 (2005). https://doi.org/10.1016/j.jqsrt.2004.09.041
  7. M. S. Scholl, “Design parameters for a two-mirror telescopefor stray-light sensitive infrared applications,” Infrared Phys.& Tech. 37, 251-257 (1996). https://doi.org/10.1016/1350-4495(95)00048-8
  8. C. Hung, Y. Fang, C. Tsai, C. Lin, K. Yeh, and J. Wu,“Optical design of high performance con-focal microscopywith digital micro-mirror and stray light filters,” Optik 121,944-952 (2010). https://doi.org/10.1016/j.ijleo.2008.12.018
  9. C. C. Yang and F. W. Ciarallo, “Optimized sensor placementfor active visual inspection,” J. Robotic Syst. 18, 1-15(2001). https://doi.org/10.1002/1097-4563(200101)18:1<1::AID-ROB1>3.0.CO;2-O
  10. J. H. Lee, C. W. Lee, Y. M. Kim, and J. W. Kim, “Optomechanicaldesign of a compact imaging spectrometer for amicrosatellite STSAT3,” J. Opt. Soc. Korea 13, 193-200(2009). https://doi.org/10.3807/JOSK.2009.13.2.193
  11. C. S. Lim, “The optical design of miniaturized microscopeobjective for CARS imaging catheter with fiber bundle,” J.Opt. Soc. Korea 12, 424-430 (2010).

Cited by

  1. A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV vol.17, pp.2, 2013, https://doi.org/10.3807/JOSK.2013.17.2.142
  2. Novel ray tracing method for stray light suppression from ocean remote sensing measurements vol.24, pp.10, 2016, https://doi.org/10.1364/OE.24.010232
  3. Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 vol.23, pp.4, 2012, https://doi.org/10.3807/KJOP.2012.23.4.167
  4. Effects of Stray Light in Blue-light Blocking Lens on the Quality of Image vol.17, pp.5, 2016, https://doi.org/10.5762/KAIS.2016.17.5.612
  5. Optical Noise Removal in the Focal Plane of the Spaceborne Camera vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.278
  6. Analysis and calculation of the veiling glare index in optical systems vol.28, pp.11, 2018, https://doi.org/10.1088/1555-6611/aadf19
  7. Stray light analysis, baffle, and optical design of a high-resolution satellite camera vol.12, pp.02, 2018, https://doi.org/10.1117/1.JRS.12.026009
  8. Optical system design of star sensor and stray light analysis vol.14, pp.1, 2018, https://doi.org/10.1186/s41476-018-0078-8
  9. High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite vol.19, pp.4, 2019, https://doi.org/10.3390/s19040797