DOI QR코드

DOI QR Code

Composition-Some Properties Relationships of Non-Alkali Multi-component La2O3-Al2O3-SiO2 Glasses

무알칼리 다성분 La2O3-Al2O3-SiO2 유리의 조성과 몇 가지 물성의 관계

  • Kang, Eun-Tae (Division of Nano & Advanced Materials Science and Engineering, Gyeongsang National University, Engineering Research Institute) ;
  • Yang, Tae-Young (Division of Nano & Advanced Materials Science and Engineering, Gyeongsang National University, Engineering Research Institute) ;
  • Hwang, Jong-Hee (Optic & Electronic Ceramics Division, KICET)
  • 강은태 (경상대학교 나노.신소재공학부, 경상대학교 공학연구원) ;
  • 양태영 (경상대학교 나노.신소재공학부, 경상대학교 공학연구원) ;
  • 황종희 (한국세라믹기술원 광.전자세라믹본부)
  • Received : 2010.12.17
  • Accepted : 2011.01.11
  • Published : 2011.03.31

Abstract

Non-Alkali multicomponent $La_2O_3-Al_2O_3-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for thermal expansion coefficient, glass transition temperature, Young's modulus, Shear modulus and density are as follows: ${\alpha}(/^{\circ}C)=8.41{\times}10^{-8}x_1+5.72{\times}10^{-7}x_2+2.13{\times}10^{-7}x_3+1.09{\times}10^{-7}x_4+1.10{\times}10^{-7}x_5+1.15{\times}10^{-7}x_6+2.72{\times}10^{-8}x_7+2.41{\times}10^{-7}x_8-1.08{\times}10^{-8}x_1x_2+4.28{\times}10^{-8}x_3x_7-2.02{\times}10^{-8}x_3x_8-1.60{\times}10^{-8}x_4x_5-2.71{\times}10^{-9}x_4x_8-2.19{\times}10^{-8}x_5x_6-3.89{\times}10^{-8}x_5x_7$ $T_g(^{\circ}C)=7.36x_1+15.35x_2+20.14x_3+8.97x_4+13.85x_5+4.22x_6+28.21x_7-1.44x_8-0.84x_2x_3-0.45x_2x_5-1.64x_2x_7+0.93x_3x_8-1.04x_5x_8-0.48x_6x_8$ $E(GPa)=2.04x_1+14.26x_2-1.22x_3-0.80x_4-2.26x_5-1.67x_6-1.27x_7+3.63x_8-0.24x_1x_2-0.07x_2x_8+0.14x_3x_6-0.68x_3x_8+0.29x_4x_5+1.28x_5x_8$ $G(GPa)=0.35x_1+1.78x_2+1.35x_3+1.87x_4+9.72x_5+29.16x_6-0.99x_7+3.60x_8-0.48x_1x_6-0.50x_2x_5+0.08x_3x_7-0.66x_3x_8+0.94x_5x_8$ ${\rho}(g/cm^3)=0.09x_1+0.51x_2-4.94{\times}10^{-3}x_3-0.03x_4+0.45x_5-0.07x_6-0.10x_7+0.07x_8-9.60{\times}10^{-3}x_1x_2-8.20{\times}10^{-3}x_1x_5+2.17{\times}10^{-3}x_3x_7-0.03x_3x_8+0.05x_5x_8$ The optimal glass composition similar to the thermal expansion coefficient of Si based on these fitted models is $65.53SiO_2{\cdot}25.00Al_2O_3{\cdot}5.00La_2O_3{\cdot}2.07ZrO_2{\cdot}0.70MgO{\cdot}1.70SrO$.

Keywords

References

  1. O. V. Mazurin, M. V. Strel’tsina, T. P. Shvaiko-Shvaik-Ovskaya, and A. O. Mazurina, “Determination of the Most Probable Concentration Dependences of the Properties of Binary Glasses with the Use of the SciGlass Information System,” Glass Physics and Chemistry, 29 [6] 555-70 (2003). https://doi.org/10.1023/B:GPAC.0000007931.32598.94
  2. O. V. Mazurin, “Glass Properties: Compliation, Evaluation, and Prediction,” J. Non-Cryst. Solids, 351 1103-12 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.01.024
  3. L.A. Chick and G.F. Piepel, “Statistically Designed Optimization of a Glass Composition,” J. Am. Ceram. Soc., 67 [11] 763-68 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19514.x
  4. M.S. Zolotar and C.A.C. Zavaglia, “Study of the Sol-Gel Processing of Glass-Ceramic Powders in the $SiO_2-Al_2O_3-CaO-CaF_2$ System. I,” J. Non-Cryst. Solids, 247 50-7 (1999). https://doi.org/10.1016/S0022-3093(99)00032-0
  5. R.J. Martin, L.M. Platts, A.B. Seddon, and E.C. Stillman, “The Design and Analysis of a Mixture Experiment on Glass Durability,” Aust. N. Z. J. Stat 45 [1] 19-27 (2003). https://doi.org/10.1111/1467-842X.00258
  6. E.T. Kang, M.J. Kim, and J.D. Kim, “Relationship Between Ionic Conductivity and Composition of $Li_2O-ZrO_2-SiO_2$ Glasses Determined from Mixture Design(in Korean),” J. Kor. Ceram. Soc., 44 [4] 219-23 (2007). https://doi.org/10.4191/KCERS.2007.44.4.219
  7. C. Duee, F. Desanglois, I. Lebecq, G. Moreau, A. Leriche, and C. Follet-Houttemane, “Mixture Design Applies to Glass Bioactivity Evaluation in the Si-Ca-Na System,” J. Non-Cryst. Solids, 355 943-50 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.04.031
  8. J.T. Kohli and J.E. Shelby, “Formation and Properties of Rare Earth Aluminosilicate Glasses,” Phys. Chem. Glasses 32 [2] 67-71 (1991).
  9. J. Marchi, D.S. Morais, J. Schneider, J.C. Bressiani, and A.H.A. Bressiani, “Characterization of Rare Earth Aluminosilicate Glasses,” J. Non-Cryst. Solids, 351 863-68 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.01.078
  10. R.D. Snee and D.W. Marquardt, “Screening Concepts and Designs for Experiments with Mixtures,” Technometrics, 18 19-29 (1976). https://doi.org/10.2307/1267912
  11. M. Miaoka and T. Yamazaki, “Studies of the Glass-formation Range of Silicate Systems. Investigations on the Glass-formation Range, 2,” J. Ceram. Assoc. Japan, 71 215-23 (1963) https://doi.org/10.2109/jcersj1950.71.816_215
  12. D. W. Marquardt, “Generalized Inverses, Ridge Regression, Biased Linear Estimation and Nonlinear Estimation,” Technometrics, 12 591-612 (1970). https://doi.org/10.2307/1267205
  13. T. J. Mitchell, “An Algorithm for Construction of ‘D-optimal’ Experimental Designs,” Technometrics, 16 203-10 (1974). https://doi.org/10.2307/1267940

Cited by

  1. Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion vol.48, pp.22, 2013, https://doi.org/10.1007/s10853-013-7613-1