DOI QR코드

DOI QR Code

Effect of Crystal Structural Environment of Pr3+ on Photoluminescence Characteristics of Double Tungstates

  • Lee, Kyoung-Ho (Department of BK21 Semiconductor & Display Engineering, Hoseo University) ;
  • Chae, Ki-Woong (Department of Materials Science and Engineering, Hoseo University) ;
  • Cheon, Chae-Il (Department of BK21 Semiconductor & Display Engineering, Hoseo University) ;
  • Kim, Jeong-Seog (Department of BK21 Semiconductor & Display Engineering, Hoseo University)
  • Received : 2010.07.26
  • Accepted : 2011.01.31
  • Published : 2011.03.31

Abstract

In this article, the effect of the crystal structural environment of $Pr^{3+}$ ions on the photoluminescence (PL) characteristics of double tungstates, such as $A(M_{1-X}Pr_X)W_2O_8$ (A=Li, Cs, M = In, Y, Sc, La; $0.007{\leq}x{\leq}0.1$) and $La_{1.96}Pr_{0.04}W_3O_{12}$ are characterized. By varying the ion radius in A and M sites, the structural environment of $Pr^{3+}$ ions were modified. The structural criteria, that is, the point charge electrostatic potentials V around the $Pr^{3+}$ activator, were calculated using the crystal structural parameters. The point charge potential V can be a valid criterion for $^3P_o$ quenching in various double tungstates. When the calculated V values are large (> 6.0), the luminescence from the $^3P_0$ level becomes dominant. When the calculated V values are about 3.8, the $^1D_2$ line appears weakly but $^3P_0$-level luminescence is absent. When the calculated V values are small (< 2.0), the luminescence from the $^1D_2$ level becomes dominant and $^3P_0$-level luminescence is absent. At 2.0$^3P_o$ quenching to $^1D_2$ level occurs substantially in accordance with the structural criterion of the point charge potential model.

Keywords

References

  1. C. R. Ronda, T. Justel, and H. Nikol, “Rare Earth Phosphors: Fundamentals and Applications,” J. Alloys Compd., 275-77 669-76 (1998). https://doi.org/10.1016/S0925-8388(98)00416-2
  2. (a)A. P. Vink, P. Dorenbos, and C. W. E van Eijk, “Observation of the Photon Cascade Emission Process under $4f^15d^1$ and Host Excitation in Several $Pr^{3+}$-doped Materials,” J. Solid State Chem., 171 308-12 (2003). https://doi.org/10.1016/S0022-4596(02)00183-4
  3. S. Kuck, I. Sokolska, M. Henke, M. Doring, and T. Scheffler, “Photon Cascade Emission in $Pr^{3+}$-doped Fluorides,” J. Lumin., 102-3 176-81 (2003). https://doi.org/10.1016/S0022-2313(02)00486-6
  4. J.P.M. Van Vliet, G. Blasse, and L.H. Brixner, “Luminescence Properties of Alkali Europium Double Tungstates and Molybdates $AEuM_2O_8$,” J. Solid State Chem., 76 160-166 (1988). https://doi.org/10.1016/0022-4596(88)90203-4
  5. L. Macalik, J. Hanuza, J. Sokolnicki, and J. Legendziewicz, “Optical Properties of $Pr^{3+}$ in Lanthanum Double Molybdates and Tungstates: $KLa_{1-x}\;Pr_x(MO_4)_2$ (M = Mo, W; x ${\leq}$ 1),” Spectrochim. Acta, 55 251-62 (1999). https://doi.org/10.1016/S1386-1425(98)00191-7
  6. H. Yamamoto, S. Seki, and T. Ishiba, “The Eu Site Symmetry in AEu $(MoO_4)_2$ (A=Cs or Rb) Generating Saturated Red Luminescence,” J. Solid State Chem., 94 396-403 (1991). https://doi.org/10.1016/0022-4596(91)90206-W
  7. K. H. Lee, K.-W. Chae, C. I. Cheon, and J. S. Kim, “Photoluminescence and Structural Characteristics of $A(M_{1-x}Prx)\;W_2O_8$(A=Li, Cs, M=Al, Sc, La),” J. Eur. Ceram. Soc., 30 243-47 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.048
  8. V. Pankratov, L. Grigorjeva D. Millers, S. Chernov, and A. S. Voloshinovskii, “Luminescence Center Excited State Absorption in Tungstates,” J. Lumin., 94-5 427-32 (2001). https://doi.org/10.1016/S0022-2313(01)00326-X
  9. Z. Lou and M. Cocivera, “Cathodluminescence of $CaWO_4$ and $SrWO_4$ Thin Films Prepared by Spray Pyrolysis,” Mater. Res. Bull., 37 1573-82 (2002). https://doi.org/10.1016/S0025-5408(02)00851-6
  10. E. Pinel, P. Boutinaud, and R. Mahiou, “Using a Structure Criterion for Selection of Red-emitting Oxide-based Compounds Containing $Pr^{3+}$,” J. Alloys Compd., 374 165-68 (2004). https://doi.org/10.1016/j.jallcom.2003.11.084
  11. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making Red Emitting Phosphors with $Pr^{3+}$,” Opt. Mater., 28 9-13 (2006). https://doi.org/10.1016/j.optmat.2004.09.027
  12. A. M. Srivastava, D. A. Doughty, and W. W. Beers, “On the Vacuum-Ultraviolet Excited Luminescence of $Pr^{3+}$ in $LaB_3O_6$,” J. Electrochem. Soc., 144 L190-L192 (1997). https://doi.org/10.1149/1.1837795
  13. C. De M. Donega, A. Meijerink, and G. Blasse, “Non-Radiative Relaxation Process of the $Pr^{3+}$ ions in Solids,” J. Phys. Chem. Solids, 56 673-75 (1995). https://doi.org/10.1016/0022-3697(94)00183-9
  14. M. Okumura, M.Tamatani, A.K. Albessard, and N. Matsuda, “Luminescence Properties of Rare Earth Ion-doped Monoclinic Yttrium Sesquioxide,” Jpn. J. Appl. Phys., 36 6411-15 (1997). https://doi.org/10.1143/JJAP.36.6411
  15. M. Gaertner, D. Abeln, A. Pring, M. Wilde, and A. Reller, “Synthesis, Structure, and Reactivity of Novel Lanthanum Tungstates,” J. Solid State Chem., 111 128-33 (1994). https://doi.org/10.1006/jssc.1994.1207
  16. J. S. Kim, J. C. Lee, C. I. Cheon, and H.-J. Kang, “Crystal Structures and Low Temperature Cofiring Ceramic Property of (1-x)(Li,RE)$W_2O_8-xBaWO_4$ Ceramic (RE = Y,Yb),” Jpn. J. of Appl. Phys., 45 7397-400 (2006). https://doi.org/10.1143/JJAP.45.7397
  17. W.M. Yen, S. Shionoya, and H. Yamamoto, “Principal Phosphor Materials and Their Optical Properties,” Chapter. 3, pp. 293-338, Phosphor Handbook, CRC Press, New York, 1998.
  18. X. Gong, F. Xiong, Y. Lin, Q. Tan, Z. Luo, and Y. Huang Y., “Crystal Growh and Spectral Properties of $Pr^{3+}:La_2(WO_4)_3$,” Mater. Res. Bull., 42 413-19 (2007). https://doi.org/10.1016/j.materresbull.2006.07.013
  19. P. J. Deren, R. Mahiou, W. Strek, A. Bednarkiewicz, and G. Bertrand, “Up-conversion in $KYb(WO_4)_2:Pr^{3+}$ Crystal,” Opt. Mater., 19 [1] 145-48 (2002). https://doi.org/10.1016/S0925-3467(01)00212-9
  20. P. E. Tomaszewski, A. Pietraszko, M. Maczka, and J. Hanuza, “$CsAl(MoO_4)_2$, Structure Reports Online,” Acta Crystallogr., Sect. E., 58 119-20 (2002). https://doi.org/10.1107/S0108767301019444

Cited by

  1. Investigation of Co- and Pr-doped yttria-stabilized cubic zirconia (YSZ) single crystal grown by skull melting method vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.140