DOI QR코드

DOI QR Code

Effect of Copper Oxide on Migration and Interaction of Protons in Barium Zirconate

BaZrO3에서의 프로톤 전도와 상호작용에 대한 CuO의 영향

  • Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Byung-Kook (High Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 정용찬 (한국기술교육대학교 신소재공학과) ;
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 김병국 (한국과학기술연구원 고온에너지재료센터) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Received : 2011.01.06
  • Accepted : 2011.03.16
  • Published : 2011.03.31

Abstract

The effect of copper oxide on migration and interaction of protons in barium zirconate was investigated using density functional theory. One copper atom was substituted for a zirconium atom site, and a proton was added to a $3{\times}3{\times}3$ barium zirconate superstructure. An energy barrier of 0.89 eV for proton migration was the highest among several energy barriers. To investigate the interaction between multiple protons and a copper atom, two protons were added to the superstructure. Various proton positions were determined by the interaction between the two protons and the copper atom.

Keywords

References

  1. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, “Proton Conduction in Sintered Oxides and its Application to Steam Electrolysis for Hydrogen Production,” Solid State Ionics, 3-4 359-63 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  2. F. L. Joud, G. Gauthier, and J. Mougin, “Current Status of Proton-conductiong Solid Oxide Fuel Cells Development,” J. Appl. Electrochem., 39 [4] 535-43 (2009). https://doi.org/10.1007/s10800-008-9744-7
  3. K. D. Kreuer, “Proton Conductivity: Materials and Applications,” Chem. Mater., 8 [3] 610-41 (1996). https://doi.org/10.1021/cm950192a
  4. K. D. Kreuer, “Proton-conducting Oxides,” Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  5. K. D. Kreuer, “Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskitetype Oxides,” Solid State Ionics, 125 [1-4] 285-302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
  6. T. Schober and H. G. Bohn, “Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$,” Solid State Ionics, 127 [3-4] 351-60 (2000). https://doi.org/10.1016/S0167-2738(99)00283-0
  7. H. G. Bohn and T. Schober, “Electrical Conductivity of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$,” J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
  8. A. M. Azad, S. Subramaniam, and T. W. Dung, ‘‘On the Development of High Density Barium Metazirconate $(BaZrO_3)$ Ceramics,” J. Alloy. Compd. Soc., 334 [1-2] 118-30 (2002). https://doi.org/10.1016/S0925-8388(01)01785-6
  9. P. Babilo and S. M. Haile, ‘‘Enhanced Sintering of Yttriumdoped Barium Zirconate by Addition of ZnO,” J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  10. Y. J. Xing, Z. H. Xi, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Z. Q. Xue, and D. P. Yu, “Thermal Evaporation Synthesis of Zinc Oxide Nanowires,” Appl. Phys. A, 80 [7] 1527-30 (2005). https://doi.org/10.1007/s00339-003-2388-x
  11. J. S. Park, J. H. Lee, H. W. Lee, and B. K. Kim, ‘‘Low Temperature Sintering of $BaZrO_3$-based Proton Conductors for Intermediate Temperature Solid Oxide Fuel Cells,” Solid State Ionics, 181 [3-4] 163-7 (2010). https://doi.org/10.1016/j.ssi.2009.06.015
  12. M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, “Effect of Acceptor Dopants on the Proton Mobility in $BaZrO_3$: A Density Functional Investigation,” Phys. Rev. B, 76 [5] 054307-15 (2007). https://doi.org/10.1103/PhysRevB.76.054307
  13. B. Merinov and W. Goddard III, “Proton Diffusion Pathways and Rates in Y-doped $BaZrO_3$ Solid Oxide Electrolyte,” J. Chem. Phys., 130 [19] 194707-12 (2009). https://doi.org/10.1063/1.3122984
  14. D. H. Kim, Y. C. Jeong, J. S. Park, B. K. Kim, and Y. C. Kim, “Transfer of Oxygen Vacancy and Proton in Y-doped $BaZrO_3$,” J. Kor. Ceram. Soc., 46 [6] 695-99 (2009). https://doi.org/10.4191/KCERS.2009.46.6.695
  15. G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B, 47 [1] 558-61 (1993). https://doi.org/10.1103/PhysRevB.47.558
  16. G. Kresse and J. Furthuller, “Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set,” Comput. Mat. Sci., 6 [1]15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  17. G. Kresse and J. Furthuuller, “Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set,” Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  18. P. E. Blochl, “Projector Augmented-wave Method,” Phys. Rev. B, 50 [24] 17953-79 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77 [18] 3865-8 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-zone Integrations,” Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  21. D. Sheppard, R. Terrell, and G. Henkelman, “Optimization Methods for Finding Minimum Energy Paths,” J. Chem. Phys., 128 [13] 134106-15 (2008). https://doi.org/10.1063/1.2841941
  22. P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, “Densityfunctional Calculations of Prefactors and Activation Energies for H Diffusion in $BaZrO_3$,” Phys. Rev. B, 76 [9] 094301-7 (2007). https://doi.org/10.1103/PhysRevB.76.094301