DOI QR코드

DOI QR Code

Optimal Design of Permanent Magnet Thrust Bearings

영구자석형 스러스트 베어링의 최적 설계

  • Received : 2010.06.14
  • Accepted : 2011.01.18
  • Published : 2011.04.01

Abstract

In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

본 논문에서는 환형 영구자석을 이용한 스러스트 베어링의 최적설계에 대하여 기술하였다. 영구자석형 스러스트 베어링은 두 조의 환형 영구자석으로 이루어지며, 한 조의 영구자석이 다른 한 조의 영구자석 내부에위치한다. 영구자석간의 축방향 변위 (엇갈림)에 의해 축방향 힘이 발생하고 이를 통해 스러스트 베어링 역할을 하게 된다. 최소한의 영구자석으로 베어링 부하용량을 만족하는 베어링 설계 파라미터를 구하기 위해 본 논문에서는 등가전류판 방법을 이용하여 해석적 설계식을 유도하고, 적절한 제한 조건을 설정하여 최적 설계를 수행하였다. 최적 설계 결과는 3 차원 유한요소해석을 통해 검증하였다. 본 논문에서 고려한 축방향 배열과 Halbach 배열의 스러스트 베어링 중 Halbach 배열이 축방향 배열에 비해 동일한 부피의 영구자석으로 더 큰 부하용량을 얻을 수 있음을 확인하였다. 등가전류판 방법의 유효성을 3 차원 유한요소해석을 통해 검증하였고, 축방향 배열보다Halbach 배열이 등가전류판 방법의 가정에 좀 더 민감하게 영향을 받는 것을 알 수 있었다.

Keywords

References

  1. Yoo, S., Park, C., Choi, S., Lee, J. and Noh, M., 2008, “Validation of Flexible Rotor Model for a Large Capacity Flywheel Energy Storage System,” Tras. Of the KSME A, Vol. 32, No. 12, pp. 1096-1101. https://doi.org/10.3795/KSME-A.2008.32.12.1096
  2. Jang, G. and Park, J., 2009, “Development of aHighly Efficient Hard Disk Drive Spindle Motor witha Passive Magnetic Thrust Bearing and aHydrodynamic Journal Bearing,” Journal of AppliedPhysics, Vol. 97, Issue 10, pp. 10Q507-10Q507-3,.
  3. Ohji, T., Ichiyama, S., Amei, K., Sakui, M. and Yamada, S., 2004, “Conveyance Test by Oscillation and Rotation to a Permanent Magnet Repulsive-Type Conveyor,” IEEE Trans. On Magnetics, Vol. 40, No. 4. https://doi.org/10.1109/TMAG.2004.832263
  4. Backers, F. T., 1960-1961, “A Magnetic JournalBearing,” Phillips Technical Rev., Vol. 22, pp.232-238.
  5. Yonnet, J., 1978, “Passive Magnetic Bearings with Permanent Magnets,” IEEE Trans. Magn., Vol. MAG-14, No. 5, pp.803-805. https://doi.org/10.1109/TMAG.1978.1060019
  6. Yonnet, J., 1981 “A New Type of Permanent MagnetCoupling,” IEEE Trans. Mag., Vol. MAG-17, No. 6,pp.1169-1173.
  7. Azzerboni, B., Cardelli, E. and Tellini, A., 1989, “Computation of the Magnetic Field in Massive Conductor Systems,” IEEE Trans. Magn., Vol. 25, No.1, pp. 4462-4473. https://doi.org/10.1109/20.45327
  8. Furlani, E., Reznik, S. and Kroll, A., 1995, “A Three-Dimensional Field Solution for Radially Polarized Cylinders,” IEEE Trans. Magn., Vol. 31, No. 1, pp.844-851. https://doi.org/10.1109/20.364587
  9. Akoun, G. and Yonnet, J. P., 1984, “3D Analytical Calculation of the Forces Exerted between Two Cuboidal Magnets,” IEEE Trans. Magn., Vol. MAG-20, No. 5, pp. 1962-1964. https://doi.org/10.1109/TMAG.1984.1063554
  10. Ravaud, R., Lemarquand, G. and Lemarquand, V., 2009, “Force and Stiffness of Passive Magnetic Bearings Using Peramanent Magnets. Part 1: Axial Magnetization,” IEEE Trans. Magn., Vol. 45, No. 7. https://doi.org/10.1109/TMAG.2009.2016088
  11. Moser, R., Sandtner, J. and Bleuler, H., 2006, “Optimization of Repulsive Passive Magnetic Bearings,” IEEE Trans. On Magnetics, Vol. 42, No. 8, pp. 2038-2042. https://doi.org/10.1109/TMAG.2005.861160
  12. Chen, C., Paden, B., Antaki, J., et. al., 2002, “AMangetic Suspension Theory and Its Application tothe HeartQuest Ventricular Assist Device,” ArtificialOrgans, Vol. 26, No. 11, pp. 647-951. https://doi.org/10.1046/j.1525-1594.2002.06889.x
  13. Jackson, J., 1975, Classical Electrodynamics, 2ndedition, New York : John Wiley & Sons.
  14. Earnshaw, 1842, “On the Nature of MolecularForces Which Regulate the Constitution of theLuminiferous Ether,” Cambridge Philosoph, Trans.,Vol. 7, pp. 97-112.
  15. $MATLAB^{TM}$ Optimization Toolbox User’s Guide,2010, The MathWorks Inc., Cambridge, USA.

Cited by

  1. Comparative Study of Performance of Switching Control and Synchronous Notch Filter Control for Active Magnetic Bearings vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-A.2013.37.4.511