DOI QR코드

DOI QR Code

Comparison of the Antioxidant Effects of Diallyl Sulfide, Capsaicin, Gingerol and Sulforaphane in $H_2O_2$-Stressed HepG2 Cells

산화스트레스가 유도된 인체 간암세포 (HepG2)에서 Sulforaphane과 Diallyl Sulfide, Capsaicin, Gingerol의 항산화효과 비교연구

  • Lee, So-Youn (Department of Food and Nutrition and Research Institute of Obesity Sciences, Sungshin Women's University) ;
  • Wi, Hae-Ri (Department of Food and Nutrition and Research Institute of Obesity Sciences, Sungshin Women's University) ;
  • Lee, Myoung-Sook (Department of Food and Nutrition and Research Institute of Obesity Sciences, Sungshin Women's University)
  • 이소연 (성신여자대학교 식품영양학과, 비만과학연구소) ;
  • 위해리 (성신여자대학교 식품영양학과, 비만과학연구소) ;
  • 이명숙 (성신여자대학교 식품영양학과, 비만과학연구소)
  • Received : 2011.11.14
  • Accepted : 2011.12.13
  • Published : 2011.12.31

Abstract

Oxygen is necessary to sustain life, yet cellular oxygen metabolism creates destructive elements called free radicals. Free radicals are chemically unbalanced and carrying free electrons that can damage molecules, potentially damaging the cell itself. For this reason, many antioxidant products, including supplements and functional foods, are being developed. In particular, natural products are rich sources of pharmacologically active compounds. The purpose of this study was to investigate the antioxidant effects of target biomaterials in Korean traditional spices such as diallyl sulfide (DAS), capsaicin (CAP), and gingerol (GGR), and to investigate the response of the antioxidant defense system to oxidative stress by hydrogen peroxide ($H_2O_2$) compared to sulforaphane (SFN) in HepG2 cells. After the analysis of the cell viability using Cell Counting kit-8 (CCK-8) assay, we determined that the optimum levels were $200{\mu}M$ DAS, $25{\mu}M$ CAP, $50{\mu}M$ GGR, and $12.5{\mu}M$ SFN. Antioxidant enzymes were measured and protein expression was detected by Western blotting. All treatments showed a significant decrease in antioxidant enzyme activity such as superoxide dismutase, catalse, and glutathione peroxidase in HepG2 cells. Additionally, DAS, CAP, GGR and SFN increased the antioxidant system-related transcription factor Nrf2 which was found to be regulated by the activation of MAPK-JNK in this study. In conclusion, these results indicate the protective effects of DAS CAP, GGR, and SFN against $H_2O_2$-induced oxidative stress.

Keywords

References

  1. Statistics Korea, http://kostat.go.kr.; 2007.
  2. Homan R, Grossman JE, Pownnall HJ. Differential effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells. J Lipid Res 1991; 32: 231-241
  3. Devy, C, Gautier, R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem Pharmacol 1990; 39(3): 399-405 https://doi.org/10.1016/0006-2952(90)90043-K
  4. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59(3): 527-605
  5. Takahashi M, Shibata M, Niki E. Estimation of lipid peroxidation of live cells using fluorescent probe. Free Radic Biol Med 2001; 31(2): 164-174 https://doi.org/10.1016/S0891-5849(01)00575-5
  6. Fuster V, Alexander RW, O'Rourke RA. Hurst's The Heart (10th ed.). New York: McGraw-Hill; 2001. p.161-175
  7. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 2000; 908: 219-225
  8. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 2006; 103 (52): 19689-19694 https://doi.org/10.1073/pnas.0609502103
  9. De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev 1966; 46(2): 323-357
  10. Awasthi YC, Beutler E, Srivastava SK. Purification and properties of human erythrocyte glutathione peroxidase. J Biol Chem 1975; 250(13): 5144-5149
  11. Kuramoto T. Development and application of food materials from plant extract such as SOD. Fd Process 1992; 27: 22-23
  12. Horton AA, Fairhurst S. Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol 1987; 18(1): 27-79 https://doi.org/10.3109/10408448709089856
  13. Yoshizumi M, Abe J, Haendeler J, Huang Q, Berk BC. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem 2000; 275(16): 11706- 11712 https://doi.org/10.1074/jbc.275.16.11706
  14. Lee M, Bae MA. Docosahexaenoic acid induces apoptosis in CYP2E1-containing HepG2 cells by activating the c-Jun N-terminal protein kinase related mitochondrial damage. J Nutr Biochem 2007; 18(5): 348-354 https://doi.org/10.1016/j.jnutbio.2006.06.003
  15. Chen C, Yu R, Owuor ED, Kong AN. Activation of antioxidantresponse element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 2000; 23 (6): 605-612 https://doi.org/10.1007/BF02975249
  16. Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, Kumagai T, Nakamura Y, Osawa T, Horio F, Itoh K, Iida K, Yamamoto M, Uchida K. A Sulforaphane analogue that potently activates the Nrf2- dependent detoxification Pathway. J Biol Chem 2002; 277(5): 3456-3463 https://doi.org/10.1074/jbc.M110244200
  17. Spencer SR, Xue LA, Klenz EM, Talalay P. The potency of inducers of NAD(P)H: (quinone-acceptor) oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations. Biochem J 1991; 273(Pt3): 711- 717
  18. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium Selenite Induces Superoxide-Mediated Mitochondrial Damage and Subsequent Autophagic Cell Death in Malignant Glioma Cells. Cancer Res 2007; 67(13): 6314-6324 https://doi.org/10.1158/0008-5472.CAN-06-4217
  19. Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, Phang JM. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 2005; 26(8): 1335-1342 https://doi.org/10.1093/carcin/bgi083
  20. Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, Sima C, Dinischiotu A. Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Pol 2010; 57(3): 355-360
  21. Sahara N, Takeshita A, Kobayashi M, Shigeno K, Nakamura S, Shinjo K, Naito K, Maekawa M, Horii T, Ohnishi K, Kitamura K, Naoe T, Hayash H, Ohno R. Phenylarsine oxide (PAO) more intensely induces apoptosis in acute promyelocytic leukemia and As2O3-resistant APL cell lines than As2O3 by activating the mitochondrial pathway. Leuk Lymphoma 2004; 45(5): 987- 995 https://doi.org/10.1080/10428190310001617222
  22. Patlolla AK, Barnes C, Hackett D, Tchounwou PB. Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 2009; 6(2): 643-653 https://doi.org/10.3390/ijerph6020643
  23. Duthie GG, Duthie SJ, Kyle JA. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 2000; 13(1): 79-106 https://doi.org/10.1079/095442200108729016
  24. Baek YM, Hwang HJ, Kim SW, Hwang HS, Lee SH, Kim JA, Yun JW. A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics 2008; 8(22): 4748-4767 https://doi.org/10.1002/pmic.200800094
  25. Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli- Forti G, Hrelia P. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergiclike neuroblastoma cell line. J Neurochem 2009; 111(5): 1161-1171 https://doi.org/10.1111/j.1471-4159.2009.06394.x
  26. Kikuzaki H, Kawasaki Y, Nakatani N. Structure of antioxidative compounds in ginger. In: Food Phytochemicals for Cancer Prevention II. ACS Symposium Series. Washington: ACS publications; 1994(547). p.237-243
  27. Prasad S, Kalra N, Shukla Y. Modulatory effects of diallyl sulfide against testosteroneinduced oxidative stress in Swiss albino mice. Asian J Androl 2006; 8(6): 719-723 https://doi.org/10.1111/j.1745-7262.2006.00201.x
  28. Pirmohamed M, Williams D, Tingle MD, Barry M, Khoo S, O'Mahony C, Wilkins EG, Breckenridge AM, Park BK. Intracellular glutathione in the peripheral blood cells of HIV-infected infected patients: failure to show a deficiency. AIDS 1996; 10(5): 501- 507 https://doi.org/10.1097/00002030-199605000-00008
  29. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP. Glutathione in human plasma: decline in association with aging, age-related macular degeneration and diabetes. Free Radic Biol Med 1998; 24(5): 699-704 https://doi.org/10.1016/S0891-5849(97)00286-4
  30. Degl'Innocenti D, Rosati F, Iantomasi T, Vincenzini MT, Ramponi G. GSH system in relation to redox state in dystrophic skin fibroblasts. Biochimie 1999; 81(11): 1025-1029 https://doi.org/10.1016/S0300-9084(99)00334-X
  31. Chung FL, Wang M, Rivenson A, Iatropoulos MJ, Reinhardt JC, Pittman B, Ho CT, Amin SG. Inhibition of lung carcinogensis by black tea in Fischer rats treated with a tobacco-specific carcinogen: caffeine as an important constituent. Cancer Res 1998; 58 (18): 4096-4101
  32. Hail N Jr, Lotan R. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J Natl Cancer Inst 2002; 94 (17): 1281-1292 https://doi.org/10.1093/jnci/94.17.1281
  33. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2): 313-322 https://doi.org/10.1006/bbrc.1997.6943
  34. Granado-Serrano AB, Martín MA, Haegeman G, Goya L, Bravo L, Ramos S. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45- related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br J Nutr 2010 ; 103(2): 168-179 https://doi.org/10.1017/S0007114509991747
  35. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 2003; 278(10): 8135-8145 https://doi.org/10.1074/jbc.M211898200
  36. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 2001; 98(6): 3410-3415 https://doi.org/10.1073/pnas.051618798
  37. Chan K, Han XD, Kan YW. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 2001; 98(8): 4611-4616 https://doi.org/10.1073/pnas.081082098
  38. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 2001; 61(8): 3299-3307
  39. Ramos-Gomez M, Dolan PM, Itoh K, Yamamoto M, Kensler TW. Interactive effects of nrf2 genotype and oltipraz on benzo[a] pyrene-DNA adducts and tumor yield in mice. Carcinogenesis 2003; 24: 461-467 https://doi.org/10.1093/carcin/24.3.461
  40. Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basicleucine zipper protein. Biochim Biophys Acta 2000; 1517(1): 19- 26 https://doi.org/10.1016/S0167-4781(00)00238-4
  41. Halliwell B, Aruoma OI. DNA damage by oxygen-derived species: its mechanism and measurement in mammalian systems. FEBS Lett 1991; 281(1-2): 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  42. Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 1993; 12(5): 2005-2015
  43. Menghini R. Genotoxicity of active oxygen species in mammalian cells. Mutat Res 1988; 195(3): 215-230 https://doi.org/10.1016/0165-1110(88)90001-2
  44. Thejass P, Kuttan G. Antiangiogenic activity of Diallyl Sulfide (DAS). Int Immunopharmacol 2007; 7(3): 295-305 https://doi.org/10.1016/j.intimp.2006.10.011
  45. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 1997; 17(1): 3-9
  46. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10: 405-455 https://doi.org/10.1146/annurev.cb.10.110194.002201
  47. Lee TY, Lee KC, Chen SY, Chang HH. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-a and NF-jB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem Biophys Res Commun 2009; 382(1): 134-139 https://doi.org/10.1016/j.bbrc.2009.02.160
  48. Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, Park R, Kwon KB, Park BH. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NFkappaB pathway. Toxicol Appl Pharmacol 2009; 235(1): 57-67 https://doi.org/10.1016/j.taap.2008.11.007
  49. Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, Yin H. Increased ntestinal inflammatory response and gut barrier dysfunction in rf2-deficient mice after traumatic brain injury. Cytokine 2008; 44 (1): 135-140 https://doi.org/10.1016/j.cyto.2008.07.005

Cited by

  1. Quality Characteristics of Nokdumook using Yangha(Zingiber mioga R.) Powder vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.521
  2. Anti-oxidant and Anti-obesity Effects of Red Pepper and Zanthoxylum schinifolium Ethanol Extract, Main Ingredient of Mara Source vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1544
  3. 캡사이신 분말을 첨가한 쿠키의 품질 특성 vol.27, pp.5, 2014, https://doi.org/10.9799/ksfan.2014.27.5.921
  4. AMPK 활성화를 통한 목통의 항산화 효과 vol.29, pp.1, 2015, https://doi.org/10.15188/kjopp.2015.02.29.1.18