Research Trend of Trophic Transfer of Nanoparticles in Aquatic Ecosystems

나노입자의 수생태계 영양단계전이 연구동향

  • Lee, Woo-Mi (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Received : 2011.11.15
  • Accepted : 2011.12.21
  • Published : 2011.12.31

Abstract

With its recent advances, nanotechnology is now being applied to various areas. Despite the benefits of nanoparticles, their risk in the environment has caused controversy, which is now becoming an international issue. Nanoparticles can easily infiltrate into cells, accumulate in biota, and may cause adverse effects in the levels of molecules, cells and organisms, and in the community. If nanoparticles are released into the environment, they can be transferred to organisms in the ecosystem, and eventually to the human body through the food chain. In this study, the research trend of the trophic transfer of nanoparticles in the food chain was investigated. Although a few investigations have been conducted regarding this topic, the trophic transfer of nanoparticles is becoming a significant issue in the area of nanotoxicology due to the potential risk to humans via the biomagnification process. While previous studies have demonstrated evidence of the trophic transfer of nanoparticles intensive future studies are needed to provide further information on the properties of nanomaterials, the exposure media, and the in vivo mechanisms such as uptake, accumulation, and depuration.

Keywords

References

  1. Bouldin, J.L., T.M. Ingle, A. Sengupta, R. Alexander, R.E. Hannigan and R.A. Buchanan. 2008. Aqueous toxicity and food chain transfer of Quantum DOTs in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry 27: 1958-1963. https://doi.org/10.1897/07-637.1
  2. Coleman, J.G., D.R. Johnson, J.K. Stanley, A.J. Bednar, C.A.W. Jr., R.E. Boyd and J.A. Steevens. 2010. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ Toxicol Chem 29: 1575-1580. https://doi.org/10.1002/etc.196
  3. EC. CORDIS. 2011. http://cordis.europa.eu/home_en.html.
  4. EEB (European Environmental Bureau). 2009. Nanomaterials-Health and environmental concerns.
  5. Ferry, J.L., P. Craig, C. Hexel, P. Sisco, R. Frey, P.L. Pennington, M.H. Fulton, I.G. Scott, A.W. Decho, S. Kashiwada, M.J. Catherine and S.J. Timothy. 2009. Transfer of gold nanoparticles from the water column to the estuarine food web. Nature Nanotechnology 4: 441-444. https://doi.org/10.1038/nnano.2009.157
  6. Gottschalk, F., T. Sonderer, R.W. Scholz and B. Nowack. 2009. Modeled Environmental Concentrations of Engineered Nanomaterials ($TiO_{2}$, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environ Sci Technol 43: 9216-9222. https://doi.org/10.1021/es9015553
  7. Holbrook, R.D., K.E. Murphy, J.B. Morrow and K.D. Cole. 2008. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nature Nanotechnology 3: 352-355. https://doi.org/10.1038/nnano.2008.110
  8. Judy, J.D., J.M. Unrine and P.M. Bertsch. 2010. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science and Technology 45: 776-781.
  9. Lee, W.M. and Y.J. An. 2010. Research trends of ecotoxicity of nanoparticles in water environment. Journal of Korean Society on Water Quality 26: 566-573.
  10. Lee, W.M., S.W. Kim, J.I. Kwak, S.H. Nam, Y.J. Shin and Y.J. An. 2010. Research Trends of Ecotoxicity of Nanoparticles in Soil Environment. Toxicology Research 26: 253-259. https://doi.org/10.5487/TR.2010.26.4.253
  11. Lee, W.-M., J.I. Kwak and Y.-J. An. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, in press.
  12. Lin, D. and B. Xing. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution 150: 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
  13. MEST (Ministry of Education, Science, and Technology). 2008. National Technology Roadmap.
  14. National Science and Technology Information Service. 2011. http://www.ntis.go.kr/Thmain.do.
  15. Nel, A., T. Xia, L. Madler and N. Li. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627. https://doi.org/10.1126/science.1114397
  16. Nel, A.E., L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova and M. Thompson. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8: 543-557. https://doi.org/10.1038/nmat2442
  17. OECD. Database on Research into the Safety of Manufactured Nanomaterials. 2011. http://webnet.oecd.org/NanoMaterials/Pagelet/Front/Default.aspx.
  18. Oughton D.H., T. Hertel-Aas, E. Pellicer, E. Mendoza and E.J. Joner. 2008. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem 27: 1883-1887. https://doi.org/10.1897/07-578.1
  19. Petersen E.J., R.A. Pinto, D.J. Mai, P.F. Landrum and W.J. Weber. 2011. Influence of Polyethyleneimine Graftings of Multi-Walled Carbon Nanotubes on their Accumulation and Elimination by and Toxicity to Daphnia magna. Environ Sci Technol 45: 1133-1138. https://doi.org/10.1021/es1030239
  20. Renault, S., M. Baudrimont, N. Mesmer-Dudons, P. Gonzalez, S. Mornet and A. Brisson. 2008. Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bulletin 41: 116-126. https://doi.org/10.1007/BF03216589
  21. Sft (Staens forurensningstilsyn; Norwegian Pollution Control Authority). 2007. Environmental fate and ecotoxicity of engineered nanoparticles.
  22. The project on emerging nanotechnologies. 2011. www.nanotechproject.org.
  23. Tervonen, K., G. Waissi, E.J. Petersen, J. Akkanen and J.V.K. Kukkonen. 2010. Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29: 1072-1078.
  24. Tolstoshev, A. 2006. Nanotechnology; Assessing the environmental risk for Australia. Earth policy center. Victroria.
  25. Tuominen, M. and E. Schultz. 2010. Environmental aspects related to nanomaterials. Finnish Environment. Finnish Environment Institute. Helsinki.
  26. UBA (Umwelt Bundes Amt). 2006. Nanotechnology: Opportunities and risks for humans and the environment.
  27. US EPA. 2007. Nanotechnology white paper. EPA 100/B-07/001, Science policy council, Washington, DC 20460.
  28. US EPA. Nanotechnology research project. 2011. http://epa.gov/ncer/nano/research/nano_tox.html.
  29. Unrine, J.M., S.E. Hunyadi, O.V. Tsyusko, W. Rao, W.A. Shoults-Wilson and P.M. Bertsch. 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environ Sci Technol 44: 8308-8313. https://doi.org/10.1021/es101885w
  30. Vonk, J.A., J. Struijs, D. van de Meent, W.J.G.M. Peijnenburg. 2009. Nanotechnology in perspective. RIVM; National Institute for Public Health and the Environment.
  31. Werlin, R., J.H. Priester, R.E. Mielke, S. Kramer, S. Jackson, P.K. Stoimenov, G.D. Stucky, G.N. Cherr, E. Orias and P.A. Holden. 2011. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature Nanotechnology 6: 65-71. https://doi.org/10.1038/nnano.2010.251
  32. Zhu, X., J. Wang, X. Zhang, Y. Chang and Y. Chen. 2010. Trophic transfer of $TiO_{2}$ nanoparticles from daphnia to zebrafish in a simplified fresh water food chain. Chemosphere 79: 928-933. https://doi.org/10.1016/j.chemosphere.2010.03.022
  33. Zijverden, M. van and A.J.A.M. Sips. 2009. Nanotechnology in perspective. RIVM; National Institute for Public Health and the Environment.