DOI QR코드

DOI QR Code

Physicochemical Properties of Taro Flours with Different Drying, Roasting and Steaming Conditions

토란분말의 건조, 볶음 및 증자 조건에 따른 이화학적 특성

  • Received : 2011.06.07
  • Accepted : 2011.08.21
  • Published : 2011.12.31

Abstract

To evaluate the processing adaptability of taro flours, the physicochemical properties of taro flour with different drying, roasting and steaming conditions were investigated. The moisture content and total dietary fiber were decreased as temperature increased with hot-air drying. Freeze-dried taro flours showed the highest vitamin C contents. Taro flours made by freeze-drying and hot-air drying showed significantly higher total dietary fiber content than those with roasting and steaming process. Steamed taro flours had the highest water absorption index, while hot-air dried and freeze dried taro flours had the highest water solubility index. No differences were displayed in the differential scanning calorimetry (DSC) thermal characteristics among hot-air dried and freeze dried taro flours. Roasted taro displayed decreased onset temperature and peak temperature as roasting temperature increased. Using a rapid visco-analyzer, the peak viscosity, through viscosity, and final viscosity of dried and steamed taro flours were higher than roasted taro flours, whereas the set back value, which is a prediction of retrogradation, decreased with steaming processing. From those results, it could be concluded that hotair dried taro flours, which have high gelatinization viscosity, are beneficial in imparting viscosity to dough products and hot-air drying after steaming taro flours, which retard retrogradation, is good for porridge and flake base products.

토란분말의 가공 활용도를 높이기 위해서 열풍건조, 동결건조, 건조 후 로스팅 및 증자 후 건조 처리하는 가공공정을 이용하여 토란분말을 제조하였으며, 이들의 영양성분 및 이화학적 특성의 변화를 관찰하여 가공적성을 검토하였다. 토란분말의 수분함량과 식이섬유 함량은 열풍건조 온도가 높아질수록 감소하였고 비타민 C 함량은 동결 건조한 토란분말에서 가장 높았다. 건조 후 로스팅하거나 증자 후 건조 처리한 토란분말의 식이섬유 함량은 열풍 건조나 동결 건조한 분말에 비해 감소하였다. 수분흡수지수는 상대적으로 증자 후 건조 처리한 분말에서 높게 나타났고 수분용해 지수는 열풍건조 및 동결 건조한 토란분말에서 높게 나타났다. DSC를 이용한 토란분말의 호화 중 열역학적 특성은 열풍건조와 동결 건조한 토란분말에서 유의성 있는 차이를 보이지 않았으며, 건조 후 로스팅 처리 온도가 높아질수록 호화개시온도와 최대호화온도는 감소하였다. RVA 특성에서는 열풍 건조 시 온도가 높아질수록 호화개시온도가 점차 낮아지고 최고점도는 증가하였으며 전분입자가 붕괴되기 쉬운 정도를 나타내는 breakdown과 냉각 후 노화의 정도를 나타내는 setback의 수치도 높게 나타났다. 반면 증자후 건조 처리한 토란분말은 최고점도가 높게 나타났으나 breakdown 및 setback의 수치는 낮게 나타났다. 이상의 결과를 종합하여 볼 때, 열풍 건조한 토란분말의 경우 식이섬유 함량이 높으며, 호화 시 점도가 높아 반죽제품의 점도부여에 적합할 것으로 판단되며, 증자 후 건조 처리한 토란분말의 경우 수분흡수지수가 다른 처리분말에 비해 높고 호화 시 점도가 높으면서 노화를 지연시키는 작용을 하기 때문에 죽이나 후레이크 같은 분말제품이나 dough의 첨가제로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Sajeev MS, Manikantan MR, Kingsly ARP, Moorthy SN, Sreekumar J. Texture analysis of taro (Colocasia esculenta L. Schott) cormels during storage and cooking. J. Food Sci. 69: 315-321 (2004)
  2. MFAFF. Marketing policy bureu. p. 9. Present condition and actual production of vegetables from greenhouse. Ministry for Food, Agriculture, Forestry and Fisheries, Gyeonggi-do, Korea (2010)
  3. Kim EK, Kim CJ. Physicochemical and processing property of taro and taro starch. Food Ind. Nutr. 3: 55-64 (1998)
  4. Kim EK, Chung EK, Lee HO, Yum CA. A study on physicochemical properties of taro during the pretreatment process of making toranbyung. J. East Asian Soc. Dietary Life 5: 255-262 (1995)
  5. Allen ON, Allen EK. The manufacture of poi from taro in Hawaii. Hawaii Agriculture Experiment Station. Honolulu, HI, USA (1933)
  6. Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip WK. Physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535 (1992)
  7. Godoy CV, Tulin EE, Quevedo ES. Physicochemical properties of raw and blanched taro flours. J. Food Process. Pres. 16: 239-252 (1992) https://doi.org/10.1111/j.1745-4549.1992.tb00205.x
  8. Crabtree J, Baldry J. The use of taro products in bread making. J. Food Technol. 17: 771-777 (1982)
  9. Maga JA, Liu MB, Rey T. Taro extrusion. Carbohyd. Polym. 21: 177-178 (1993) https://doi.org/10.1016/0144-8617(93)90014-U
  10. Onyeike EN, Olungwe T, Uwakwe AA. Effect of heat-treatment and defatting on the proximate composition of some Nigerian local soup thickeners. Food Chem. 53: 173-175 (1995) https://doi.org/10.1016/0308-8146(95)90784-5
  11. Hong GP, Nip WK. Functional properties of precooked taro flour in sorbets. Food Chem. 36: 261-270 (1990) https://doi.org/10.1016/0308-8146(90)90065-C
  12. Jeong JW, Park KJ, Lee HJ, Kim JH, Kwon KH. Effect of immersion liquids on quality characteristics of peeled taro during storage. Korean J. Food Sci. Technol. 38: 742-750 (2006)
  13. Njintang YN, Mbofung CMF. Development of taro (Colocasia esculenta L. Schott) flour as an ingredient for food processing: Effect of gelatinisation and drying temperature on the dehydration kinetics and colour of flour. J. Food Eng. 58: 259-265 (2003) https://doi.org/10.1016/S0260-8774(02)00384-9
  14. Aboubakar, Njintang YN, Scher J, Mbofung CMF. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 86: 294-305 (2008) https://doi.org/10.1016/j.jfoodeng.2007.10.006
  15. Njintang YN, Mbofung CMF, Moates GK, Parker ML, Craig F, Smith AC, Waldron WK. Functional properties of five varieties of taro flour, and relationship to creep recovery and sensory characteristics of achu (taro based paste). J. Food Eng. 82: 114-120 (2007) https://doi.org/10.1016/j.jfoodeng.2006.12.023
  16. Njintang YN, Mbofung CMF. Effect of precooking time and drying temperature on the physico-chemical characteristics and invitro carbohydrate digestibility of taro flour. Lebensm. -Wiss. Technol. 39: 684-691 (2006) https://doi.org/10.1016/j.lwt.2005.03.022
  17. Iwuoha CI. Comparative evaluation of physicochemical qualities of flours from steam-processed yam tubers. Food Chem. 85: 541-551 (2004) https://doi.org/10.1016/j.foodchem.2003.06.022
  18. AOAC. Official Method of Analysis of AOAC Intl. 15th ed. Method 777, 780, 788. Association of Official Analyticical Communities, Arlington, VA, USA (1990)
  19. Ku KM, Kim HS, Kim BS, Kang YH. Antioxidant activities and antioxidant constituents of pepper leaves from various cultivars and correlation between antioxidant activities and antioxidant constituents. J. Appl. Biol. Chem. 52: 70-76 (2009) https://doi.org/10.3839/jabc.2009.013
  20. Prosky L, Asp N, Swizer TF, Devries J, Furda I. Determination of insoluble and total dietary fiber on foods and food products: Interlaboratory study. J. AOAC Int. 71: 1017-1023 (1988)
  21. Anderson RA. Water absorption and solubility and amylograph characteristics of roll-cooked small grain products. Cereal Chem. 59: 265-271 (1982)
  22. Phillips RD, Chinnan MS, Granch AL, Miller J, Mcwatters KH. Effects of pre-treatment on functional and nutritional properties of cowpea meal. J. Food Sci. 53: 805-809 (1998)
  23. Donovan JW. Phase transitions of the starch-water system. Biopolymers 18: 263-267 (1979) https://doi.org/10.1002/bip.1979.360180204
  24. Tie J, Park HY, Ryu GH. Characteristics of cereals prepared by extrusion-cooking and freeze-drying. Korean J. Food Sci. Technol. 37: 757-762 (2005)
  25. Lee BY, Choi HS, Hwang JB. Analysis of food components of Gastrodiae Rhizoma and changes in several characteristics at the various drying conditions. Korean J. Food Sci. Technol. 34: 37-42 (2002)
  26. Chung HS, Kim JK, Youn KS. Effects of roasting temperature on phycochemical properties of Job's tears (Coix lachryma Jobi L. var ma-yeun) powder and extracts. Korean J. Food Preserv. 13: 477-482 (2006)
  27. Hwang JK, Kim CT, Cho SJ, Kim CJ. Effects of various thermal treatments on physicochemical properties of wheat bran. Korean J. Food Sci. Technol. 27: 394-403 (1995)
  28. Shih MC, Kuo CC, Chiang W. Effects of drying and extrusion on colour, chemical composition, antioxidant activities, and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117: 114-121 (2009) https://doi.org/10.1016/j.foodchem.2009.03.084
  29. Lim JH, Kim JH, Seo YH, Moon KD. Effects of low-temperature blanching on physical properties of chestnut powder. Korean J. Food Sci. Technol. 31: 1216-1220 (1999)
  30. Kye SK. Water binding capacity of vegetable fiber. Korean J. Food Nutr. 9: 231-235 (1996)
  31. Kwon JH, Lee GD, Lee SJ, Chung SK, Choi JU. Changes in chemical components and physical properties with freeze drying and hot air-drying of Dioscorea batatas. J. Korean Soc. Food Sci. Nutr. 27: 908-913 (1998)
  32. Sodhi NS, Singh N. Morphological, thermal, and rheological properties of starches separated from rice cultivars grown in India. Food Chem. 80: 99-108 (2003) https://doi.org/10.1016/S0308-8146(02)00246-7
  33. Yue P, Rayas-Duarte P, Elias E. Effect of drying temperature on physicochemical properties of starch isolated from pasta. Cereal Chem. 76: 541-547 (1999) https://doi.org/10.1094/CCHEM.1999.76.4.541
  34. Lee GC, Kim SJ, Koh BK. Effect of roasting condition on the physicochemical properties of rice flour and the quality characteristics of tarakjuk. Korean J. Food Sci. Thechnol. 35: 905-913 (2003)

Cited by

  1. Quality Characteristics of Toranbyung with Different Boiling Periods and Types of Gomyeong vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.985
  2. Characteristics and Sensory Optimization of Taro (Colocasia esculenta) under Different Aging Conditions for Food Application of Black Taro vol.48, pp.2, 2016, https://doi.org/10.9721/KJFST.2016.48.2.133
  3. Effect of Different Steaming and Drying Temperature Conditions on Physicochemical Characteristics of Pumpkin Powder vol.45, pp.6, 2013, https://doi.org/10.9721/KJFST.2013.45.6.742