DOI QR코드

DOI QR Code

The Antioxidative Effect of Black Garlic Extract on Paraquat-induced Oxidative Stress in ICR Mice

Paraquat에 의해 유발된 산화적 스트레스에 의한 흑마늘 추출물의 항산화 효과

  • Noh, Byung-Kyu (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jung-Kyu (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Won, Yong-Duk (Uiseong Black Garlic Farming Association) ;
  • Park, Hyun-Jin (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sung-Joon (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 노병규 (고려대학교 생명과학대학 식품공학부) ;
  • 이정규 (고려대학교 생명과학대학 식품공학부) ;
  • 원용덕 (의성흑마늘 영농조합) ;
  • 박현진 (고려대학교 생명과학대학 식품공학부) ;
  • 이성준 (고려대학교 생명과학대학 식품공학부)
  • Received : 2011.10.29
  • Accepted : 2011.11.22
  • Published : 2011.12.31

Abstract

We investigated the antioxidative effect of black garlic extract (BGE) on paraquat (PQ)- induced oxidative stress in mice. A DPPH radical scavenging activity assay showed that BGE had potent free radical scavenging activity, comparable to that exhibited by vitamin C. Mice were administered with either vitamin C or two levels of BGE by oral gavage for 10 days, with PQ being injected intraperitoneally on day five. It was found that BGE reduced the liver enzyme levels induced by PQ injection in mice. The concentrations of plasma and hepatic malonedialdehyde were both significantly reduced in the BGE groups compared with the levels in the PQ group, whereas the hepatic superoxide dismutase and catalase activities were significantly increased in the BGE groups compared with the PQ group. These findings suggest that BGE has potent antioxidative activities in vivo and thus could prevent the oxidative stress induced by PQ injection in mice by two mechanisms: the induction of antixoxidative enzyme systems and direct scavenging of reactive oxygen species.

본 연구에서는 PQ의 독성으로 유발된 산화적 스트레스에 대한 흑마늘 추출물의 항산화 활성 효과를 검정하여 건강기능식품으로써의 흑마늘 추출물 기능성을 알아보기 위해 흑마늘 추출물의 전자공여능을 측정하였으며 마우스를 이용하여 PQ 투여 전 5일, 투여 후 5일간 흑마늘 추출물을 경구투여한 후, PQ 독성에 의한 체중 변화 관찰과 혈중 간 기능 지표인 AST와 ALT값을 측정 하였다. 또한 간 조직에서 SOD, catalase의 활성과 GSH, MDA 함량 등을 측정하여 비교함으로써 흑마늘 추출물의 황산화 활성 성분이 PQ의 독성에 대한 회복 작용 그리고 지질과산화와의 상호 관련성을 검토하였다. 흑마늘 추출물의 투여는 간조직에서 항산화 효소인 SOD, catalase 활성을 유의적으로 증가 시켰다. 또한, 흑마늘 추출물은 자유라디컬에 의해 생성된 지질과 산화의 최종 산물인 MDA의 함량을 혈액과 간 조직에서 유의적으로 감소 시키는 효과를 보였으며, 산화적 스트레스에 의한 방어 작용을 하는 GSH 농도를 유의적으로 증가 시켰다. 이와 같이 흑마늘 추출물은 항산화 관련 효소의 활성도를 증가시키고 생체 내에서 내인성 항산화 물질의 합성능력을 강화 시킴으로써 산화적 스트레스로 인한 생체 손상에 대한 회복 작용을 향상 시킨다고 결론 내릴 수 있으며, 항산화 건강기능식품으로써의 기능성이 기대된다.

Keywords

References

  1. Rubin H. Cell aging in vivo and in vitro. Mech. Aging Dev. 98: 1-35 (1997) https://doi.org/10.1016/S0047-6374(97)00067-5
  2. Kelner MJ, Alexander NM. Inhibition of erythrocyte superoxidedismutase by diethyldithiocarbamate also results in oxyhemoglobin- catalyzed glutathione depletion and methemoglobin production. J. Biol. Chem. 261: 1636-1641 (1986)
  3. Scandalios JG. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7-12 (1993)
  4. Harris ED. Regulation of antioxidant enzymes. FASEB J. 6: 2675-2683 (1992)
  5. Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology 180: 65-77 (2002) https://doi.org/10.1016/S0300-483X(02)00382-7
  6. Lee SJ, Kim JH, Kim MJ, Yoon SM, Jeong JC, Sung NJ. Effect of garlic and medicinal plants composites on antioxidant activity and lipid levels of liver in hypercholesterolemic rats. J. Life Sci. 19: 1769-1776 (2009) https://doi.org/10.5352/JLS.2009.19.12.1769
  7. Yoon GA. Effect of garlic spplement and exercise on pasma lipid and antioxidant enzyme system in rats. Korean J. Nutr. 39: 3-10 (2006)
  8. Choi DJ, Lee SJ, Kang MJ, Cho HS, Sung NJ, Shin JH. Physicochemical characteristics of black garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 37: 465-471 (2008) https://doi.org/10.3746/jkfn.2008.37.4.465
  9. Lee HS, Yang ST, Ryu BH. Effects of aged black garlic extract on lipid improvement in rats fed with high fat-cholesterol diet. J. Life Sci. 21: 884-892 (2011) https://doi.org/10.5352/JLS.2011.21.6.884
  10. Ahn JN, Chae HS, Moon JS, Kim DW, Kwon MS, Park BS. Effects of full-fat flax seed, $\alpha$-tocopherol and selenium on the expression of cell surface antigen of broiler chickens. Korean J. Poultry Sci. 28: 231-237 (2001)
  11. Kim SH, Baek BH. Effects of aerobic exercise and black garlic intake on blood lipids, lipid peroxidation and BAP in rats. J. Life Sci. 21: 1025-1031 (2011) https://doi.org/10.5352/JLS.2011.21.7.1025
  12. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  13. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  14. Ogkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  15. Delmaestro RF. Free-radicals in medicine and biology. Int. J. Microcirc. Clin. Exp. 1: 207-207 (1982)
  16. Villano D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcia-Parrilla MC. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71: 230-235 (2007) https://doi.org/10.1016/j.talanta.2006.03.050
  17. Afanasev IB, Dorozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free-radical scavenging mechanisms of inhibitory-action of rutin and quercetin in lipid-peroxidation. Biochem. Pharm. 38: 1763-1769 (1989) https://doi.org/10.1016/0006-2952(89)90410-3
  18. Casini AF, Pompella A, Comporti M. Liver glutathione depletion induced by bromobenzene, iodobenzene, and diethylmaleate poisoning and its relation to lipid-peroxidation and necrosis. Am. J. Pathol. 118: 225-237 (1985)
  19. Ross D. Glutathione, free-radicals and chemotherapeutic-agents-mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol. Therapeut. 37: 231-249 (1988) https://doi.org/10.1016/0163-7258(88)90027-7
  20. Kakkar R, Kalra J, Mantha SV, Prasad K. Lipid-peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell. Biochem. 151: 113-119 (1995) https://doi.org/10.1007/BF01322333

Cited by

  1. Development of Functional Mixed Drink using Extract of Hericium erinacium Cultivated with Artemisia capillaris and Black Garlic vol.27, pp.5, 2014, https://doi.org/10.9799/ksfan.2014.27.5.751
  2. The quality and sensory characteristics of tofu with various levels of black garlic extract vol.21, pp.5, 2014, https://doi.org/10.11002/kjfp.2014.21.5.688
  3. Optimization of Soy Sauce Production Conditions with Black Garlic Extract by Response Surface Methodology vol.32, pp.3, 2016, https://doi.org/10.9724/kfcs.2016.32.3.307
  4. Effect of Black Garlic and Gaeddongssuk (Artemisia annua L.) Extracts on the Lipid Profile and Hepatic Antioxidant Enzyme Activities of Exercised Rats vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.869