DOI QR코드

DOI QR Code

Antimicrobial Activity of Citral against Salmonella Typhimurium and Staphylococcus aureus

살모넬라와 황색포도상구균에 대한 시트랄의 항균효과

  • Kim, Jung-Jee (Department of Food and Nutrition, Kookmin University) ;
  • In, Ye-Won (Department of Food and Nutrition, Kookmin University) ;
  • Oh, Se-Wook (Department of Food and Nutrition, Kookmin University)
  • 김정지 (국민대학교 식품영양학과) ;
  • 인예원 (국민대학교 식품영양학과) ;
  • 오세욱 (국민대학교 식품영양학과)
  • Received : 2011.07.22
  • Accepted : 2011.09.23
  • Published : 2011.12.31

Abstract

The aim of this study was to investigate the antimicrobial characteristics of citral against Salmonella Typhimurium and Staphylococcus aureus. Antimicrobial activities were determined according to the citral concentration and initial pH. The tested citral concentrations were 0-1,000 ppm in tryptic soy broth (TSB) and 0-5,000 ppm in Angelica keiskei juice (NokJeup). The initial pHs tested were 4-7. Antimicrobial activities increased as citral concentration increased. S. aureus was more susceptible than S. Typhimurium during culture in TSB. But S. aureus was less susceptible to pH changes. Citral caused about 1-2 log reduction of S. aureus and 2-5 log reduction of S. Typhimurium after 10 min exposure at different pHs. As the citral concentration in the Algelica keiskei juice increased, S. aureus was easily inactivated but S. Typhimurium was not inactivated.

본 연구는 그람 양성균과 음성균인 S. aureus와 S. Typhimurium를 대상으로 시트랄의 농도와 pH에 따른 항균활성 특성 및 식품 적용 가능성을 조사하였다. 농도별 항균활성은 TSB에 시트랄을 0-1,000 ppm 농도로 처리하였으며, pH는 buffer를 이용하여 pH 4.0에서 pH 7.0로 조정하여 측정하였다. 시트랄 농도 별 항균활성 실험에서는 두 균주 모두 시트랄 농도가 높아질수록 항균활성이 증가하였다. S. Typhimurium는 250 ppm 처리구에서 대조구와 유의적 차이가 없었으나 S. aureus는 약 3 log 수준으로 감소되었다. pH에 따른 항균활성은 10분이 경과 후 S. aureus는 약 1-2 log의 감소효과를, S. Typhimurium는 약 2-5 log의 감소효과를 나타내었다. TSB와는 다르게 buffer 조건에서 그람 양성 균주인 S. aureus는 S. Typhimurium와 비교하여 pH 조건에 안정적인 경향을 나타내었다. 녹즙에 적용한 시트랄은 그람 음성균인 S. Typhimurium에 대한 항균활성은 미미하였으나 양성균인 S. aureus 에 대하여 농도가 증가할수록 효과적으로 항균활성이 증가하였다.

Keywords

References

  1. Cho KH, Park SG. Antibacterial effects on Bacillus stearothermophilus by adding natural grapefruit seed extracts in soymilk. J. Korean Ind. Eng. Chem. 16: 139-143 (2004)
  2. Wikipedia. http://en.wikipedia.org/wiki/Citral. Accessed April 19, 2011.
  3. Kim CH, Lee MS, Lee KH, Ko SH, Hong HS. Antimicrobial activity of DF-1000 (grapefruit seed extract) and its substitutional effect of preservatives in meat products. Korean J. Food Sci. An. 14: 47-52 (1994)
  4. Fisher K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 101: 1232-1240 (2006) https://doi.org/10.1111/j.1365-2672.2006.03035.x
  5. Kim JG, Marshall MR, Wei C-i. Antibacterial activity of some essential oil components against five foodborne pathogen. J. Agr. Food. Chem. 43: 2893-2845 (1995)
  6. Lee DH, Ji GH. The growth strategy of pulmuone green juice. Strateg. Manage. J. 7: 51-74 (2004)
  7. Chung SY. Antioxidant nutrients of green yellow vegetable juices and nutrite scavenging effect. J. Korean Soc. Food Sci. Nutr. 8: 37-44 (2003)
  8. Shin CK. Present and prospect of fresh vegetable - extract juice industry. Food Ind. Nutr. 8: 1-7 (2003)
  9. Kim MJ, Kim JH, Yook HS, Lee KH, Byun MW. Sanitizing effect of $\gamma$-irradiation on fresh vegetable-extract juices. J. Korean Soc. Food Sci. Nutr. 28: 378-382 (1999)
  10. Martens B, Knorr D. Developments of non-thermal processes for food preservation. Food Technol. -Chicago 46: 124-129 (1992)
  11. Knorr D. Effects of high-hydrostatics pressure processes on food safety and quality. Food Technol. -Chicago 47: 156-162 (1993)
  12. Kwon SC, Choi GH, Yu KW, Lee KH. Microbiological and physicochemical changes of vegetable juices (Angelica keiskei and Brassica loeracea var. acephala) treated by UV Irradiation. J. Korean Soc. Food Sci. Nutr. 39: 1030-1037 (1999)
  13. Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 26: 122-188 (1998)
  14. Lis-Balchin M, Buchbauer G, Ribisch K, Wenger MT. Comparative antibacterial effects of novel pelargonium essential oils and solvent extracts. Lett. Appl. Microbiol. 27: 135-141 (1998) https://doi.org/10.1046/j.1472-765X.1998.00414.x
  15. Helander IM, Aladomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, Wright AV. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agr. Food Chem. 46: 3590-3595 (1998) https://doi.org/10.1021/jf980154m
  16. Somolinons M, Garcia D, Condon S, Mackey B, Pagan R. Inactivation of Escherichia coli by citral. J. Appl. Microbiol. 108: 1928-1939 (2009)

Cited by

  1. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus vol.34, 2017, https://doi.org/10.1016/j.phymed.2017.08.016
  2. Antimicrobial activities of actinonin against Bacillus cereus vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.560