DOI QR코드

DOI QR Code

Preparation of Reactive Poly(ethylene-ter-1-hexene-ter-divinylbenzene) using Metallocene Catalysts

메탈로센 촉매를 이용한 관능성 Poly(ethylene-ter-1-hexene-ter-divinylbenzene)의 제조

  • Kim, Dong-Hyun (Green Process and Material R&D Group, Korea Institute of Industrial Technology)
  • 김동현 (한국생산기술연구원 그린공정소재연구그룹)
  • Received : 2011.09.29
  • Accepted : 2011.11.30
  • Published : 2011.12.31

Abstract

In this study, we prepared poly(ethylene-ter-1-hexene-ter-divinylbenzene) using briged rac-$Et[Ind]_2ZrCl_2$ or unbriged $Cp_2ZrCl_2$ metallocene catalysts. Bridged rac-$Et[Ind]_2ZrCl_2$ catalyst showed relatively good results compared with unbridged one. When cocatalyst/catalyst molar ratio was 3000, catalytic activity indicated more than 8000(kg of polymer/$mol{\cdot}h$) which was very remarkable value. As a polymerization time increased, the weight-average molecular weight of the terpolymer gradually increased to some degree. In the case of a polymerization time of 50 minutes, the state of the terpolymer became amorphous. The range of the weight-average molecular weight and the densities of the terpolymer was 110,000~200,000 and $0.85{\sim}0.89g/cm^3$, respectively. The thermal properties and the structure of the terpolymer were also identified.

다리 구조 또는 비다리 구조의 메탈로센 촉매를 이용하여 새로운 구조의 poly(ethylene-ter-1-hexeneter-divinylbenzene) 삼원공중합체를 제조하였다. 다리구조의 rac-$Et[Ind]_2ZrCl_2$ 촉매가 비다리구조의 $Cp_2ZrCl_2$ 촉매보다 상대적으로 양호한 결과를 보여 주었다. 특히 조촉매/촉매 몰비가 3000일 때 촉매활성도는 8000(kg of polymer/$mol{\cdot}h$)이 넘는 매우 높은 수준의 활성도를 보여주었다. 또한, 중합 시간에 따라 중량 평균 분자량이 일정수준까지 점차 증가하는 경향을 나타내었고, 중합시간이 50분일 때 무정형 상태를 나타내었다. 삼원공중합체의 중량평균 분자량은 110,000~200,000, 밀도는 $0.85{\sim}0.89g/cm^3$ 수준이었다. 또한, 삼원 공중합체의 열적 성질과 구조를 확인하였다.

Keywords

References

  1. R. B. Stuart, M. N, Suzanne, and R. T. David, "Coordination Polymers", RSC publishing, Cambridge CB4 0WF, UK (2009).
  2. G. Natta, P. Pino, G. Mazzanti, and U. Giannini, "A crystallizable organometallic complex containing titanium and aluminum", J. Am. Chem. Soc., 79, 2975 (1957).
  3. D. S. Breslow and N. R. Newburg, "Bis-(Cyclopentadienyl)- titanium Dichloride-Alkylaluminum Complexes as Soluble Catalysts for the Polymerization of Ethylene", J. Am, Chem. Soc., 79, 5072 (1959).
  4. H. Sinn and W. Kaminsky, "Living Polymers on Polymerization with Extremely Productive Ziegler Catalysts", Adu. Orgenomet Chem., 18, 99 (1980).
  5. K. Weiss, U. Neugebuer, S. Blau, and H. J. Lang, "Untersuchungen von Polymerisations und Metathesereaktionen, Einfach un zweifach dimethylsilylen-verbruckte Metallocendichloride des Ti, Zr und Hf in der Ethen- und Propen- Polymerisation", J. Organomet. Chem., 520, 171 (1996). https://doi.org/10.1016/S0022-328X(96)90253-3
  6. S. K. Noh, J. H. Jung, D. H. Lee, S. K. Park, and H. J. Kim, "Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst: I. Effect of Catalyst", J. Organomet, Chem., 592, 147 (2000).
  7. S. J. Park, W. J. Wang, and S. Zhu, "Continuous solution copolymerizarion of ethylene with propylene using a constrained geometry catalyst system", Macromol. Chem. Phys., 201, 2203 (2000). https://doi.org/10.1002/1521-3935(20001101)201:16<2203::AID-MACP2203>3.0.CO;2-V
  8. W. J. Wang, E. Kolodka, S. Zhu, Archie E. Hamilelec, "Continuous solution copolymerization of ethylene and octene with constrained geometry metallocene catalyst", J. Polym. Sci.: Polymer Chemistry, 37, 2949 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2949::AID-POLA28>3.0.CO;2-W
  9. N. Naga and Y. Imanishi, "Copolymerization of Ethylene and 1,7-Octadiene, 1, 9-Decadiene with Zirconocene Catalysts", Macromol. Chem. Phys., 203, 2155 (2002). https://doi.org/10.1002/1521-3935(200211)203:15<2155::AID-MACP2155>3.0.CO;2-7
  10. Il. Kim, "Copolymerization of ethylene and 5-vinyl-2-norbornene by stereospecific metallocenes and epoxidation of the resulting copolymer", Reactive & Functional Polymers, 49, 197 (2001). https://doi.org/10.1016/S1381-5148(01)00074-8
  11. K. Nomura, H. Fukuda, S. Katao, M. Fujiki, H. J. Kim, D. H. Kim, and I. Saeed, "Olefin Polymerization by Half- Titanocenes Containing $n^{2}$-Pyrazolato Ligands-MAO Catalyst Systems", Macromolecules, 44, 1986 (2011). https://doi.org/10.1021/ma200018z
  12. S. Machida, H. Shikuma, T. Tazaki, T. Tatsumi, and S. Kurokawa, U.S. Patent 5,6008,009 (1997).
  13. F. Bai, X. Yang, and W. Huang, "Synthesis of Narrow or Monodisperse Poly(divinylbenzene) Microsheres by Distillation- Precipitation Polymerization", Macromolecules, 37, 9746 (2004). https://doi.org/10.1021/ma048566l
  14. M. A. Da Silva and G B Galland, "Synthesis and Characterization of Ethylene-Propylene-1-Pentene Terpolymers", J. Polym. Sci.: Polymer Chemistry, 46, 947 (2008). https://doi.org/10.1002/pola.22438
  15. G. R. Kim, J. W. Han, B. G. Cho, and H. J. Kang, "Crystallization Characteristics of Metallocene Low Density Polyethylene", Polymer (Korea), 25, 833 (2001).