Bioactive Phenolic Constituents from the Culms of Phyllostachys bambusoides

Hyun Jung Kim ${ }^{1}$, Min-Ah Kang ${ }^{2}$, So-Hyun Kim ${ }^{3}$, Soon-Ho Yim ${ }^{4}$, and Ik-Soo Lee*
College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Republic of Korea
${ }^{1}$ Research Center for Resistant Cells, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
${ }^{2}$ Kolmar Korea Co., Ltd., 618-3, Sinjeong-ri, Jeonui-myeon, Yeongi-gun, Chungcheongnam-do 339-853, Republic of Korea
${ }^{3}$ Biobank of Chonnam National University Hwasun Hospital, Ilsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-763, Republic of Korea
${ }^{4}$ Gist Technology Institute, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea

Abstract

In our search for bioactive phenolics from plants, the culms of Phyllostachys bambusoides has been selected for investigation of anti-cariogenic and 1,1-diphenylpicrylhydrazyl (DPPH) radical scavenging agents based on the initial screening results. Fractionation process of n-hexane and CHCl_{3} extracts afforded four phenolic constituents, ferulic acid (1), vanillin (2), coniferaldehyde (3), and coniferyl alcohol (4) as guided by their DPPH free radical scavenging activities. Additionally, activity-guided fractionation of EtOAc extract with anti-cariogenic activity has resulted in the isolation of coniferaldehyde (3), 2,6-dimethoxy-p-benzoquinone (5), p-methoxycinnamic acid (6), (\pm)-balanophonin (7), and 6-methoxychromanone (8). The structures of $\mathbf{1 - 8}$ were determined by spectroscopic data interpretation, and also by comparison of their data with the published values. Phenolic compounds 1-4 exhibited similar DPPH radical scavenging activities compared with the synthetic antioxidant, butylated hydroxytoluene (BHT), and compounds $\mathbf{3}$ and 5-8 showed significant antibacterial activity against cariogenic oral streptococci, Streptococcus mutans and S. sobrinus.

Keywords - Phyllostachys bambusoides, Gramineae, phenolics, anti-cariogenic, DPPH radical scavenger

Introduction

The Phyllostachys species including P. bambusoides, P. nigra var. henonis and P. pubescens are woody perennial evergreen plants belonging to the family Gramineae, which are very popular plants in Asia. Their culms were traditionally used as medicinal materials including Bambusae Caulis in Liquamen and Bambusae Caulis in Taenis and Bambusae Concretio Salicea, which have been used as antipyretic, antitussive and antidiuretic agents (Bae, 2000). The dried mass of a secretion from the culms of P. bambusoides S . et Z . has been used in traditional Korean medicine, and it was reported to be useful for the clinical treatment of degenerative neuronal disorders (Lee, 1986; Ko et al., 1994). In addition, the culms of Phyllostachys were widely used as grain storage and a wrapping material for foods. Several biological activities (Nikaido et al., 1984; Nishina et al., 1991; Cowan, 1999) and phytochemical constituents (Kweon et al., 2001;

[^0]Tanaka et al., 2003; Suga et al., 2003) were revealed, however, little is known about its biological evaluation and chemical composition in spite of the fact that the culms of bamboos have been used extensively as a foodstuff.

In the course of screening for bioactive compounds from MeOH extract of the culms of P. bambusoides, phenolic compounds 1-8 were found to have free radical scavenging effect on DPPH radical or anti-bacterial activities against cariogenic oral streptococci, Streptococcus mutans and S. sobrinus. This paper deals with the structure elucidation and biological evaluation of the isolated phenolic compounds.

Experimental

General Experimental Procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, with tetramethylsilane (TMS) as the internal standard were recorded using a Varian Unity INOVA 500 spectrometer (Varian, Inc., U.S.A.) for 1D and 2D NMR experiments in $\mathrm{MeOH}-d_{4}$ and CDCl_{3}. The chemical shifts
(δ) were expressed in parts per million (ppm) and coupling constants (J) were in Hz. Mass spectra were measured on a JMS-700 (Jeol, Japan) and Varian 1200, Platform II (Varian, U.S.A.) spectrometers. IR spectra were obtained on a JASCO FT/IR-300E spectrometer (Jasco Corp., Japan) and UV spectra were recorded on a JASCO V-530 UV/Vis spectrophotometer (Jasco Corp., Japan). Optical rotation was measured on a JASCO DIP1000 digital polarimeter.

TLC chromatographic analyses were carried out on precoated Silica gel $60 \mathrm{~F}_{254}$ plates, and RP-18 F_{254} plates (Merck). Visualization of the silica gel TLC was performed using $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by charring at $110^{\circ} \mathrm{C}$ for 10 min . The adsorbent used for column chromatography was silica gel 60/70-230 mesh. The flash chromatography (MPLC) was performed with a Lobar ${ }^{\mathrm{TM}}$ glass prepacked column ($11 \mathrm{~mm} \times 300 \mathrm{~mm}$), and Sephadex LH-20 (Pharmacia Biotech Co., Ltd.) was used for size exclusion chromatography. The gentamicin, gentamicin disc ($10 \mu \mathrm{~g}$), Vitamin C, BHA, and BHT were purchased from Sigma Chemical and BD Biosciences, U.S.A.
Plant material. The culms of Phyllostachys bambusoides were collected in Damyang, Jeonnam Province, Korea, in 2005 and were pulverized by using a grinder. A voucher specimen has been deposited in the College of Pharmacy, Chonnam National University, Korea.

Extraction and isolation. The dried bamboo powder (5 kg) was extracted with 5 L of methanol-water mixture (8:2) three times. After filtration, the $80 \% \mathrm{MeOH}$ extract was combined and concentrated in vacuo using rotary evaporator to give a dark green residue (210 g). This 80% MeOH extract was suspended in water (1 L) and partitioned with n-hexane, $\mathrm{CHCl}_{3}, \mathrm{EtOAc}, n-\mathrm{BuOH}$, and water, successively.

The n-hexane extract (5.2 g) was subjected to silica gel column chromatography with a gradient of $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($400: 1,200: 1,50: 1,20: 1,10: 1$) mixture to give six fractions. Fraction $3(841.1 \mathrm{mg})$ was column chromatographed on a silica gel (70-230 mesh, Merck), eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gradient mixture to give further fractions. Subfraction $3(202.2 \mathrm{mg}$) was subjected to MPLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}=200: 1\right)$ to give three subfractions and to yield compound $\mathbf{1}(1.9 \mathrm{mg}$, yield $0.0009 \%)$

The CHCl_{3} soluble extract (7.5 g) was subjected to silica gel column chromatography with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(50: 1,20: 1,10: 1)$ mixture to give five fractions. Fraction $1(95 \mathrm{mg})$ was column chromatographed on Sephadex LH-20 using $100 \% \mathrm{MeOH}$ as eluent to provide 5 fractions. Subfraction 2 was subjected to MPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=100: 1\right)$ to give three subfrac-
tions and compound 2 (2.3 mg , yield 0.0011%). Fraction $3(207.2 \mathrm{mg})$ was column chromatographed on silica gel (70-230 mesh, Merck), eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient mixture to give further four fractions. Among them, subfraction 3 was separated by MPLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(80: 1)$ to give seven fractions and compound $\mathbf{3}$ (1.2 mg , yield 0.00057%), and subfraction 5 was subjected to MPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=60: 1\right)$ to yield compound 4 (2.8 mg , yield 0.0013%).

The EtOAc-soluble extract (15 g) was subjected to silica gel column chromatography with a gradient of $\mathrm{CHCl}_{3}-\mathrm{MeOH}(100: 1,50: 1,20: 1,10: 1)$ mixture to give nine fractions. Fraction $6(320 \mathrm{mg})$ was chromatographed on a silica gel eluted with CHCl_{3} to give seven fractions (a-g). Subfraction d was subjected to MPLC (n-hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 8$) to yield compound $\mathbf{3}$ (3.5 mg , yield 0.0016%). Fraction 7 (82 mg) was dissolved in CHCl_{3}, and $90 \% \mathrm{MeOH}$ was added to solution and filtered. And then filtered solution was concentrated under reduced pressure using a rotary evaporator and dissolved in CHCl_{3} to give compound $5(20 \mathrm{mg}$, yield $0.0095 \%)$. Fraction 8 $(1.34 \mathrm{~g})$ was chromatographed on a silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient mixture to give further fractions (A-G). Fraction B was purified further on Sephadex LH20 using $\mathrm{MeOH}-\mathrm{CHCl}_{3}(3: 2)$ mixture to give compound $6(5.8 \mathrm{mg}$, yield $0.0027 \%)$, and fraction C was purified by preparative TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(20: 1)$ mixture to give compound $7(9.2 \mathrm{mg}$, yield 0.0043%) and compound 8 (1.3 mg , yield 0.0006%).

Ferulic acid (1): White powder; UV $\lambda_{\text {max }}(\mathrm{MeOH})$: 256, 309 nm ; EI-MS (m / z): 194; Molecular formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$; IR (KBr) cm ${ }^{-1}$: 1207, 1730 and $3345 ;{ }^{1} \mathrm{H}-$ NMR (500 MHz in $\mathrm{MeOH}-d_{4}$) $\delta 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.30$ ($1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8$), $6.80(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 7.06$ ($1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{H}-6$), 7.17 ($1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-$ 2), $7.60(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$ in $\left.\mathrm{MeOH}-d_{4}\right) \delta 56.6\left(\mathrm{OCH}_{3}\right), 111.9(\mathrm{C}-2), 116.1(\mathrm{C}-8), 116.6$ (C-5), 124.1 (C-6), 127.9 (C-1), 147.1 (C-7), 149.5 (C-3), 150.6 (C-4), 171.1 (C-9).

Vanillin (2): Yellowish powder: $\mathrm{UV}_{\text {max }}(\mathrm{MeOH}): 229$, 278 and 304 nm ; EI-MS (m / z): 152; Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$; IR (KBr) cm ${ }^{-1}: 1676$ and $3205 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz in $\left.\mathrm{CDCl}_{3}\right) \delta 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.22(1 \mathrm{H}$, brs, $\mathrm{H}-$ 2), $7.03(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 7.43(1 \mathrm{H}, \mathrm{dd}, J=8.4$, $1.5 \mathrm{~Hz}, \mathrm{H}-6$), $9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$ in $\left.\mathrm{CDCl}_{3}\right) \delta 56.1\left(\mathrm{OCH}_{3}\right), 108.8(\mathrm{C}-2), 114.4(\mathrm{C}-5), 127.5$ (C-6), 129.8 (C-1), 147.1 (C-3), 151.7 (C-4), 190.8 (C-7).

Coniferaldehyde (3): White amorphous solid: UV $\lambda_{\max }$ (MeOH): 223, 333 nm ; EI-MS (m / z): 178, 161, 147, 107; Molecular formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$; IR (KBr) cm^{-1} : 833, 1167,

1601 and $3380 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ in CDCl_{3}) $\delta 3.95$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J=15.7,8.0 \mathrm{~Hz}, \mathrm{H}-8), 6.97$ ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5$), 7.07 ($1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, \mathrm{H}-$ 6), 7.12 ($1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-2$), 7.38 ($1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}$, $\mathrm{H}-7), 9.65(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-9) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$ in $\left.\mathrm{CDCl}_{3}\right) \delta 55.9\left(\mathrm{OCH}_{3}\right), 109.3(\mathrm{C}-2), 114.9(\mathrm{C}-5), 124.0$ (C-6), 126.4 (C-8), 126.6 (C-1), 146.9 (C-3), 148.9 (C-4), 153.0 (C-7), 193.5 (C-9).

Coniferyl alcohol (4): White-pale yellow solid: UV $\lambda_{\text {max }}(\mathrm{MeOH}): 230,333 \mathrm{~nm}$; EI-MS (m/z): 180, 137, 124, 119, 91 and 77; Molecular formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$; IR (KBr) $\mathrm{cm}^{-1}: 1510,1600,3000,3525$ and $3595 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz in $\left.\mathrm{MeOH}-d_{4}\right) \delta 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.19(2 \mathrm{H}, \mathrm{dd}$, $J=6.0,1.1 \mathrm{~Hz}, \mathrm{H}-9), 6.19$ ($1 \mathrm{H}, \mathrm{dt}, J=15.6,6.0 \mathrm{~Hz}, \mathrm{H}-8$), $6.51(1 \mathrm{H}, \operatorname{brd}, J=15.9 \mathrm{~Hz}, \mathrm{H}-7), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{H}-5), 6.84(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, \mathrm{H}-6), 6.93(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$ in $\left.\mathrm{MeOH}-d_{4}\right) \delta$ $56.1\left(\mathrm{OCH}_{3}\right), 63.4(\mathrm{C}-9), 109.9(\mathrm{C}-2), 115.1(\mathrm{C}-5), 120.6$ (C-6), 128.0 (C-8), 130.2 (C-1), 130.5 (C-7), 147.2 (C-4), 148.5 (C-3).

2,6-Dimethoxy-p-benzoquinone (5): Yellow needle: EI-MS (m / z): 168; Molecular formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$; IR (KBr) $\mathrm{cm}^{-1}: 1593$, and 1727 ; UV $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 286 \mathrm{~nm} ;{ }^{1} \mathrm{H}-$ NMR (500 MHz in CDCl_{3}) $\delta 3.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and 5.85 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3,5$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz in CDCl_{3}) δ $56.3\left(\mathrm{OCH}_{3}\right), 107.3(\mathrm{C}-3,5), 157.1(\mathrm{C}-2,6), 176.3(\mathrm{C}-4)$, 186.2 (C-1).
p-Methoxycinnamic acid (6): White powder: EI-MS (m / z): 178; Molecular formula $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}$: 1456, 1732, 2853 and 2924; UV $\lambda_{\text {max }}$ (MeOH): 217, 323 $\mathrm{nm} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $6.38(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-8), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-$ 3, H-5), $7.62(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{H}-7), 7.45(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \mathrm{H}-2,6) ;{ }^{13} \mathrm{C}$-NMR (125 MHz in CDCl_{3}) $\delta 52.1$ $\left(\mathrm{OCH}_{3}\right), 115.0(\mathrm{C}-8), 116.9(\mathrm{C}-3,5), 127.2(\mathrm{C}-1), 131.2$ (C-2, 6), 146.7 (C-7), 161.4 (C-4), $169.8(\mathrm{COOH})$.
(\pm)-Balanophonin (7): Pale yellow oil; $[\alpha]_{D}-0.39^{\circ}$ ($\mathrm{c}=0.34, \mathrm{CHCl}_{3}$); EI-MS (m/z): 356; Molecular formula $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$; IR (KBr) $\mathrm{cm}^{-1}: 1595$, 2923, 3411; UV $\lambda_{\text {max }}$ (MeOH): 216, 339 nm ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ in $\mathrm{MeOH}-d_{4}$) $\delta 3.56(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-8), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83(2 \mathrm{H}$, brs, $\mathrm{H}-9), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.60(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-7)$, $6.63\left(1 \mathrm{H}, \mathrm{dd}, J=16.5,7.8 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}, \mathrm{H}-5), 6.84(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, \mathrm{H}-6), 6.94(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}, \mathrm{H}-2), 7.22\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right), 7.27$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6^{\prime}$), $\left.7.60(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-7)^{\prime}\right), 9.57(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{H}-9$ '). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$ in $\left.\mathrm{MeOH}-d_{4}\right) \delta 54.7$ (C-8), $56.5\left(\mathrm{OCH}_{3}\right), 56.9\left(\mathrm{OCH}_{3}\right), 64.7(\mathrm{C}-9), 90.2(\mathrm{C}-7), 110.7$ (C-5), 114.4 (C-2'), 116.4 (C-2), 119.9 (C-6), 120.1 (C-6'), 127.2 (C-8'), 129.7 (C-1'), 131.4 (C-5') 134.0 (C-1), 146.1
(C-3'), 147.9 (C-3), 149.3 (C-4), 153.1 (C-4'), 156.2 (C7'), 196.3(C-9').

6-Methoxychromanone (8): Pale yellow powder; EIMS (m / z): 178; Molecular formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$. IR (KBr): 1277, 1599 and $3424 \mathrm{~cm}^{-1}$; UV $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 257,218$, $208 \mathrm{~nm} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta 3.90(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), $3.16(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}-3), 3.96(2 \mathrm{H}, \mathrm{t}, J=6.5$ $\mathrm{Hz}, \mathrm{H}-2), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-8), 7.54(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}, \mathrm{H}-5), 7.57(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, \mathrm{H}-7) .{ }^{13} \mathrm{C}-$ NMR (125 MHz in CDCl_{3}) $\delta 41.0(\mathrm{C}-3)$, $56.3\left(\mathrm{OCH}_{3}\right)$, 59.0 (C-2), 112.0 (C-5), 115.9 (C-8), 124.9 (C-7), 130.7 (C-10), 153.5 (C-9), 199.8 (C-4).
Scavenging effect on DPPH radical. The method of Blois with modification was used to measure scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (Blois, 1958; Kitts et al., 2000). Reaction mixtures containing test samples dissolved in EtOH and $300 \mu \mathrm{M}$ DPPH in ethanolic solution in a 96 -well microtiter plate were incubated at $37^{\circ} \mathrm{C}$ for 30 min . Vitamin C and BHT were used as positive control. After the reaction, absorbance was read at 517 nm by a microplate reader and mean value was obtained from triplicate, and percent inhibition was calculated. IC_{50} (inhibitory concentration) values denote the concentration of sample required to scavenge 50% of the DPPH free radical.
Antibacterial activity and MIC determination. Two bacterial strains, S. mutans KTCT 3065, S. sobrinus KTCT 3288, were used for the determination of antibacterial activity and were cultured in Brain Heart Infusion (BHI, Difco, Detroit, U.S.A.) medium under aerobic conditions at $37^{\circ} \mathrm{C}$. The screening of antibacterial activity for fractions was conducted using a disk diffusion method (Shapiro et al., 1994). Briefly, test samples were dissolved in DMSO to a final concentration of $50 \mathrm{mg} / \mathrm{mL}$. $100 \mu \mathrm{~L}$ of prepared culture containing $108 \mathrm{CFU} / \mathrm{ml}$ of bacteria was spread on BHI agar. The discs of 8 mm in diameter placed on the inoculated agar were impregnated with $50 \mu \mathrm{~L}(2.5 \mathrm{mg} / \mathrm{mL})$ of extract. $10 \mu \mathrm{~L}$ of DMSO was used as vehicle control and gentamicin disc was also used as positive control. The inoculated plates were incubated for 24 h . Antibacterial activity was evaluated by measuring the zone of inhibition against the test bacterial strains.

MIC values were determined for single compounds from active fractions with the highest antibacterial activity in the disc diffusion assay, using a micro-well dilution method (Shapiro et al., 1994). Growth inhibitory concentration of isolated compounds was tested against Streptococcus mutans and S. sobrinus, which were incubated for 24 h at $37^{\circ} \mathrm{C}$. At the end of the incubation period, optical density of the cultures was adjusted to
0.500 ± 0.050 with sterile BHI. Sterile 96 -well microtiter plates were used by the respective growth medium. Four samples were used for each test concentration, and the experiments were performed in triplicate. Plates with wells containing $300 \mu \mathrm{~L}$ of BHI (100% growth controls) and $170 \mu \mathrm{~L}$ of BHI with $100 \mu \mathrm{~L}$ of substance to be tested were covered with plastic lids, then inoculated with $30 \mu \mathrm{~L}$ of bacterial culture adjusted to an optical density at 550 $\mathrm{nm}\left(\mathrm{OD}_{550}\right)$. All plates were incubated at $37^{\circ} \mathrm{C}$ under appropriate atmospheric conditions and growth was estimated spectrophotometrically (630 nm) after 24 h using a microtiter plate reader. The controls included the inoculated growth medium without test compounds. Sample blanks contained uninoculated medium only.

Results and discussion

The dried powder of the culms of P. bambusoides was extracted with 80% aqueous MeOH , and concentrated to yield greenish brown extract. Concentrated aqueous MeOH extract was partitioned with n-hexane, CHCl_{3}, EtOAc, n - BuOH , and water. Of them, n-hexane and CHCl_{3} extracts showed mild antioxidant activities against DPPH radical ($\mathrm{IC}_{50}: 273 \mu \mathrm{~g} / \mathrm{mL}$ for n-hexane and $244 \mu \mathrm{~g}$ / mL for CHCl_{3}), and its EtOAc extract exhibited significant antibacterial effects against oral cariogenic Streptococcus mutans (10 mm of zone inhibition). Repeated column chromatography on Si gel, Sephadex

LH-20, MPLC and HPLC of the n-hexane, CHCl_{3}, and EtOAc soluble fractions led to the isolation of eight bioactive simple phenolic compounds (1-8) (Fig. 1). Phenolics 1-4 were isolated as radical scavengers on DPPH radical from its n-hexane and CHCl_{3} extracts, and phenolic compounds $\mathbf{3}$ and $5-\mathbf{8}$ were identified as anticariogenic agents from EtOAc layer. To determine the structures of compounds, the combined analyses with a series of 1D and 2D NMR, infrared, and mass spectra were accomplished. In addition, all physical and spectroscopic data obtained in this present study were compared with those of previously published manuscripts.
Phenolics 1, 3 and 4 showed characteristic aromatic proton signals corresponding to a 1,3,4-trisubstituted aromatic ring which is composed of two doublets ($J=\sim 8$ Hz and $\sim 2 \mathrm{~Hz}$, respectively), doublet of doublets ($J=\sim 2$ and 8 Hz), as well as two doublets with a large J value of coupling constant ($J=\sim 16 \mathrm{~Hz}$) assignable to a transdouble bond. On the basis of 2D NMR spectra, the position of a methoxyl and a hydroxyl in an aromatic ring and a substituted moiety in a side chain was unambiguously elucidated. Thus, structures of these compounds were assigned as ferulic acid (1) (Young et al., 1992), coniferaldehyde (3) (Carpinella et al., 2005), and coniferyl alcohol (4) (Heravi et al., 2004). Phenolic compound $\mathbf{6}$ displayed two doublets with a large coupling constant ($J=\sim 16 \mathrm{~Hz}$) assignable to a trans-double bond, however, two ortho-coupled aromatic proton doublets

3

4

6

2

5

7

8

Fig. 1. Structures of phenolic compounds $(\mathbf{1 - 8})$ from the culms of P. bambusoides.
were observed at $\delta 6.81(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$ and $7.45(2 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}$). Therefore, compound $\mathbf{6}$ was identified as p-methoxycinnamic acid (Haruna et al., 1982).

The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2}$ showed a singlet at $\delta 9.83$ indicating an aldehyde group, in addition to two aromatic doublets ($J=8.4$ and 1.5 Hz , respectively), showing a splitting pattern of a doublet of doublets, which indicated that it is a trisubstituted benzene. The ${ }^{13} \mathrm{C}$ NMR spectral data revealed the presence of a ketone carbonyl at δ 190.8 , six aromatic ring carbons at $\delta 114.4,127.5,129.8$, 147.1, 151.7, and a methoxyl carbon signal at $\delta 56.1$. The structure of this compound was determined as vanillin (Harish et al., 2005).

Compound 5 showed a molecular ion peak at $m / z 168$, and its ${ }^{1} \mathrm{H}$-NMR spectrum exhibited only two singlet proton signals, a methoxyl signal at $\delta 3.82$ and an olefinic proton signal at $\delta 5.85$. The ${ }^{13} \mathrm{C}$-NMR spectrum showed five resonance signals, consisting of two carbonyl carbons at $\delta 176.3$ and 186.2, and two carbons for an oxygenated olefinic bond at $\delta 157.1$ and 107.3 , and a methoxyl at δ 56.3. On the basis of this evidence and of a comparison of the published data (Nishina et al., 1991), the structure of 5 was determined to be 2,6 -dimethoxy- p-benzoquinone.
Phenolic compound 7 exhibited two singlet methoxyl signals at $\delta 3.81$ and 3.90 , a trisubstituted aromatic ring at $\delta 6.77,6.84$, and 6.94 , one pair of meta-coupled benzene signals at $\delta 7.22$ and 7.27. In addition, dihydrobenzofuran type signals at $\delta 5.60$ and 3.83 , a hydroxymethylene at δ 64.7, two trans-olefinic proton signals at $\delta 6.63$ and 7.60 with J value of 16.5 Hz , and an aldehyde group at $\delta 9.57$ were also observed in the ${ }^{1} \mathrm{H}$-NMR spectrum. Based on these spectral data, compound 7 was assumed to be a hgnan, and its unambiguous structure was established to be a neolignan, (\pm)-balanophonin by 2D NMR experiments and comparison with structural information of previously published data (Haruna et al., 1982; Yeun et al., 1998).
Compound 8 exhibited signals for three aromatic protons at $\delta 6.86,7.57$, and 7.54 corresponding to a typical trisubstituted aromatic ring. Two methylenes connected to ether oxygen atom showed as two triplets at $\delta 3.16(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz})$ and $3.93(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data indicated the presence of a ketone carbonyl at $\delta 199.8$, six aromatic ring carbons at δ $112.0,115.9,124.9,130.7,149.2,153.5$, and two methylene carbons connected to an oxygen atom at $\delta 41.8$ and 59.0. The position of a methoxyl and a ketone were confirmed by long-range correlations with the ring protons in the HMBC spectrum. By the comparison of its spectral data with those of literature values (DeWald et al., 1990), the structure of $\mathbf{8}$ was identified as 6 -methoxy-

Table 1. DPPH radical scavenging activity of compounds 1-4

Compounds	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$
ferulic acid (1)	149
vanillin (2)	135
coniferaldehyde (3)	120
coniferyl alcohol (4)	146
vitamin C	90
BHT	126

Table 2. Antibacterial activity of compounds $\mathbf{3 , 5 - 8}$ isolated from the culms of P. bambusoides ${ }^{a, b}$

Compounds	Antibacterial activity	
	MIC value $(\mu \mathrm{g} / \mathrm{mL})$	

${ }^{a}$ MIC was determined by twofold serial broth dilution method. ${ }^{b}$ Vehicle control (0.1% DMSO) showed no MIC.
chromanone.
Biological activities of the isolated compounds 1-8 were summarized in the Tables $\mathbf{1}$ and $\mathbf{2}$. As shown in Table 1, phenolic compounds 1-4 isolated from n-hexane and CHCl_{3} extracts of P. bambusoides culms showed weaker radical scavenging activities on DPPH than vitamin C, however, similar antioxidant activities to that of BHT, a commercially available synthetic antioxidant. Coniferaldehyde (3) showed the strongest radical scavenging activity with an IC_{50} value of $120 \mu \mathrm{~g} / \mathrm{mL}$. The five antibacterial compounds, $\mathbf{3}$ and 5-8 identified from EtOAc extract exhibited inhibitory activity against the gram-positive cariogenic oral streptococci, S. mutans and S. sobrinus, frequently associated with human periodontitis, with MIC values ranging from 58 to $567 \mu \mathrm{~g} / \mathrm{mL}$. Antibacterial activities of all the compounds were weaker than the positive control, gentamicin. Of the isolated compounds, 2,6-dimethoxy-p-benzoquinone (5) demonstrated the strongest activity against the bacterial strain, S. mutans with an MIC value of $110 \mu \mathrm{~g} / \mathrm{mL}$. In contrast, 6 methoxychromanone (8) exhibited the strongest activity against S. sobrinus with an MIC value of $58 \mu \mathrm{~g} / \mathrm{mL}$.

Acknowlegments

We thank Gwangju Center of the Korea Basic Science

Institute (KBSI) for running NMR experiments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-220-E00042).

References

Bae, K.H., "The medicinal plants of Korea", Kyo-Hak Publishing Co., Ltd., Seoul, Korea, pp. 565-566 (2000).
Blois, M.S., Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 (1958).
Carpinella, M.C., Ferrayoli, C.G., and Palacios, S.M., Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J. Agric. Food Chem., 53(8), 2922-2927 (2005).

Cowan, M.M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12(4), 564-582 (1999).
DeWald, H.A., Heffner, T.G., Jaen, J.C., Lustgarten, D.M., McPhail, A.T., Meltzer, L.T., Pugsley, T.A, and Wise, L.D., Synthesis and dopamine agonist properties of (\pm)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol and its enantiomers. J. Med. Chem., 33, 445-450 (1990).
Harada, H., Sakagami, H., Nagata, K., Ohhara, T., Kawazoe, Y., Ishihama, A., Hata, N., Misawa, Y., Terada, H., and Konno, K., Possible involvement of lignin structure in anti-influenza virus activity. Antivir. Res., 15(1), 41-49 (1991).
Harish, R., Divakar, S., Srivastava, A., and Shivanandappa, T., Isolation of antioxidant compounds from the methanolic extract of the roots of Decalepis hamiltonii (Wight and Arn.). J. Agric. Food Chem., 53, 7709-7714 (2005).
Haruna, M., Koube, T., Ito, K., and Murata, H., Balanophonin, A new neo-lignan from Balanophora japonica Makino. Chem. Pharm. Bull., 30(4), 1525-1527 (1982).
Heravi, M., Masoum, S., and Shahbazikhah, P., Simulation of ${ }^{13} \mathrm{C}$ nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks. J. Magn. Reson., 171, 176-185 (2004).
Kitts, D.D., Wijewickreme, A.N., and Hu, C., Antioxidant properties of a

North American ginseng extract. Mol. Cell. Biol., 203, 1-10 (2000).
Ko, S.W., Laupattarakasem, W., Saengnipanthkul, S., Mahaisavariya, B., and Theapongpackdee, S., Charcoal bamboo as a bone substitute: an animal study. J. Med. Assoc. Thai., 77, 496-500 (1994).
Kweon, M.H., Hwang, H.J., and Sung, H.C., Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agr. Food Chem., 49(10), 46464655 (2001).
Lee, S.I., "Clinical application of oriental medicinal herbs", Sung Bo Publishing Co., Seoul, Korea (1986).
Nikaido, T., Sung, Y.I., Ohmoto, T., and Sankawa, U., Inhibitors of cyclic adenosine 3,5-monophosphate phosphodiesterase in Phyllostachys nigra Munro var. henonis Stapf. and Phragmites communis Trin., and inhibition by related compounds. Chem. Pharm. Bull., 32(2), 578-584 (1984).

Nishina, A., Hasegawa, K., Uchibori, T., Seino, H., and Osawa, T.J., 2,6-Dimethoxy-p-benzoquinone as an antibacterial substance in the bark of Phyllostachys heterocycla var. pubescens, a species of thickstemmed bamboo. J. Agric. Food Chem., 39(2), 266-269 (1991).
Shapiro, S., Meier, A., and Guggenheim, B., The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol., 9(4), 202-208 (1994).
Suga, A., Takaishi, Y., Goto, S., Munakata, T., Yamauchi, I., and Kogure, K., Two lignan dimers from bamboo stems (Phyllostachys edulis). Phytochemistry, 64, 991-996 (2003).
Tanaka, E., Tanaka, C., Mori, N., Kuwahara, Y., and Tsuda, M., Phenylpropanoid amides of serotonin accumulate in witches' broom diseased bamboo. Phytochemistry, 64(5), 965-969 (2003).
Young, H.S., Kim, M.S., Park, H.J., Chung, H.Y., and Choi, J.S., Phytochemical study on Catalpa ovate. Arch. Pharm. Res., 15, 322327 (1992).
Yuen, M.S.M., Xue, F., Mak, T.C.W., and Wong, H.N.C., On the absolute structure of optically active neolignans containing a dihydrobenzo [b]furan skeleton. Tetrahedron, 54(41), 12429-12444 (1998).

Received September 17, 2011
Revised October 25, 2011
Accepted October 30, 2011

[^0]: *Author for correspondence
 Tel: +82-62-530-2932; E-mail: islee@chonnam.ac.kr

