DOI QR코드

DOI QR Code

Design and Synthesis of 3-(3-Chloro-4-substituted phenyl)-4-(pyridin-4-yl)-1Hpyrazole- 1-carboxamide Derivatives and Their Antiproliferative Activity Against Melanoma Cell Line

  • El-Gamal, Mohammed I. (Department of Biomolecular Science, University of Science and Technology) ;
  • Oh, Chang-Hyun (Biomaterials Center, Korea Institute of Science and Technology)
  • Received : 2010.11.22
  • Accepted : 2010.12.28
  • Published : 2011.03.20

Abstract

Design and synthesis of new 3,4-diarylpyrazole-1-carboxamide derivatives are described. Their antiproliferative activity against A375 human melanoma cell line was tested and the effect of substituents on the diarylpyrazole scaffold was investigated. The pharmacological results indicated that most of the synthesized compounds showed moderate activity against A375, compared with Sorafenib. On the other hand, compounds Ia, Ie, IIb, and IIh were more potent than Sorafenib. In addition, compound IIa was equipotent to Sorafenib. Among all of these derivatives, compound IIb which has diethylamino and phenolic moieties showed the most potent antiproliferative activity against A375 human melanoma cell line. Virtual screening was carried out through docking of the most potent compound IIb into the domain of V600E-b-Raf and the binding mode was studied.

Keywords

References

  1. Barth, A.; Wanek, L. A.; Morton, D. L. J. Am. Coll. Surg. 1995, 181, 193.
  2. Atallah, E.; Flaherty, L. Curr. Treat. Options Oncol. 2005, 6, 185. https://doi.org/10.1007/s11864-005-0002-5
  3. Anderson, C. M.; Buzaid, A. C.; Legha, S. S. Oncol. (Williston Park) 1995, 9, 1149.
  4. Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Nature 2007, 445, 851. https://doi.org/10.1038/nature05661
  5. Garbe, C.; Eigentler, T. K. Melanoma Res. 2007, 17, 117. https://doi.org/10.1097/CMR.0b013e328042bb36
  6. Koon, H. B.; Atkins, M. B. Expert Rev. Anticancer Ther. 2007, 7, 79. https://doi.org/10.1586/14737140.7.1.79
  7. Lawson, D. H. Cancer Control 2005, 12, 236.
  8. Rosenburg, S. A.; Lotze, M. T.; Yang, J. C.; Aebersold, P. M.; Linehan, W. M.; Seipp, C. A.; White, D. E. Ann. Surg. 1989, 210, 474. https://doi.org/10.1097/00000658-198910000-00008
  9. Atkins, M. B.; Lotze, M. T.; Dutcher, J. P.; Fisher, R. I.; Weiss, G.; Margolin, K.; Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; Paradise, C.; Kunkel, L.; Rosenberg, S. A. J. Clin. Oncol. 1999, 17, 2105.
  10. Strumberg, D.; Voliotis, D.; Moeller, J. G.; Hilger, R. A.; Richly, H.; Kredtke, S.; Beling, C.; Scheulen, M. E.; Seeber, S. J. Clin. Pharmacol. Ther. 2002, 40, 580. https://doi.org/10.5414/CPP40580
  11. Richly, H.; Kupsh, P.; Passage, K.; Grubert, M.; Hilger, R. A.; Voigtmann, R.; Schwartz, B.; Brendel, E.; Christensen, O.; Haase, C. G.; Strumberg, D. Int. J. Clin. Pharmacol. Ther. 2004, 42, 650. https://doi.org/10.5414/CPP42650
  12. Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H. Cancer Res. 2004, 64, 7099. https://doi.org/10.1158/0008-5472.CAN-04-1443
  13. Strumberg, D.; Richly, H.; Hilger, R. A.; Schleucher, N.; Korfee, S. J. Clin. Oncol. 2005, 23, 965.
  14. Clark, J. W.; Eder, J. P.; Ryan, D.; Lathia, C.; Lenz, H. J. Clin. Cancer Res. 2005, 11, 5472. https://doi.org/10.1158/1078-0432.CCR-04-2658
  15. Moore, M.; Hirte, H. W.; Siu, L.; Oza, A.; Hotte, S. J.; Petrenciuc, O.; Cihon, F.; Lathia, C.; Schwartz, B. Ann. Oncol. 2005, 16, 1688. https://doi.org/10.1093/annonc/mdi310
  16. Egberts, F.; Kaehler, K. C.; Livingstone, E.; Hauschild, A. Onkologie 2008, 31, 398. https://doi.org/10.1159/000137714
  17. Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M.; Lynch, M. Mol. Cancer Ther. 2008, 7, 3129. https://doi.org/10.1158/1535-7163.MCT-08-0013
  18. Alexandrescu, D. T.; McClure, R.; Farzanmehr, H.; Dasanu, C. A. J. Clin. Oncol. 2008, 26, 4047. https://doi.org/10.1200/JCO.2008.18.3525
  19. Bennett, M. J.; Cho-Schultz, S.; Deal, J. G.; King, S. J.; Marrone, T. J.; Palmer, C. L.; Romines, W. H.; Rui, E. Y.; Sutton, S. C.; Zhender, L. R. WO 2007/105058 A2. 2007 [Chem. Abstr. 2007, 147, 385972].
  20. Pulici, M.; Zuccotto, F.; Badari, A.; Nuvoloni, S.; Cervi, G.; Traquandi, G.; Biondaro, S.; Trifiro', P.; Marchionni, C.; Modugno, M. WO 2010010154 A1. 2010 [Chem. Abstr. 2010, 115411].
  21. Dean, D. K.; Andrew, A. K.; Wilson, D. M. WO 2002094808 A1. 2002 [Chem. Abstr. 2002, 138, 4601].
  22. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3. https://doi.org/10.1016/S0169-409X(00)00129-0
  23. Clark, D. E.; Pickett, S. D. Drug Discov. Today 2000, 5, 49. https://doi.org/10.1016/S1359-6446(00)80001-X
  24. Tetko, I. V. Drug Discov. Today 2005, 10, 1497. https://doi.org/10.1016/S1359-6446(05)03584-1
  25. http://www.organic-chemistry.org/prog/peo.
  26. MOE 2008.10 of Chemical Computing Group. Inc.
  27. http://www.rcsb.org/pdb.
  28. Halgren, T. A. J. Comput. Chem. 1996, 17, 490. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

Cited by

  1. ChemInform Abstract: Design and Synthesis of 3-(3-Chloro-4-substituted phenyl)-4-(pyridine-4-yl)-1H-pyrazole-1-carboxamide Derivatives and Their Antiproliferative Activity Against Melanoma Cell Line. vol.42, pp.31, 2011, https://doi.org/10.1002/chin.201131139
  2. Antiproliferative Diarylpyrazole Derivatives as Dual Inhibitors of the ERK Pathway and COX-2 vol.82, pp.3, 2013, https://doi.org/10.1111/cbdd.12186
  3. anticancer evaluation, kinase inhibitory effects, and pharmacokinetic profile of new 1,3,4-triarylpyrazole derivatives possessing terminal sulfonamide moiety vol.34, pp.1, 2019, https://doi.org/10.1080/14756366.2018.1530225
  4. Design, Synthesis, and Preliminary Cytotoxicity Evaluation of New Diarylureas and Diarylamides Possessing 1,3,4-Triarylpyrazole Scaffold vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2991
  5. Design and synthesis of a new series of highly potent RAF kinase-inhibiting triarylpyrazole derivatives possessing antiproliferative activity against melanoma cells vol.8, pp.18, 2016, https://doi.org/10.4155/fmc-2016-0057
  6. Synthesis of New Triarylpyrazole Derivatives Possessing Terminal Sulfonamide Moiety and Their Inhibitory Effects on PGE 2 and Nitric Oxide Productions in Lipopolysaccharide-Induced RAW 264 vol.23, pp.10, 2011, https://doi.org/10.3390/molecules23102556
  7. Design, synthesis, in vitro potent antiproliferative activity, and kinase inhibitory effects of new triarylpyrazole derivatives possessing different heterocycle terminal moieties vol.34, pp.1, 2019, https://doi.org/10.1080/14756366.2019.1653292
  8. Aromatic Halogenation Using N-Halosuccinimide and PhSSiMe3 or PhSSPh vol.84, pp.11, 2019, https://doi.org/10.1021/acs.joc.9b00817
  9. Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules vol.25, pp.3, 2011, https://doi.org/10.3390/molecules25030666
  10. Synthesis, characterization, X-Ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites vol.1205, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2019.127625
  11. Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase vol.99, pp.None, 2011, https://doi.org/10.1016/j.bioorg.2020.103783