Competitive Adsorption of CO₂ and H₂O Molecules on the BaO (100) Surface: A First-Principle Study

Soonchul Kwon, Wang Ro Lee,[†] Hanna Lee,^{‡,*} Jhoon Kim,[§] and Hanlim Lee^{§,*}

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A. [†]Faculty of Liberal Education, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea [‡]Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea

*E-mail: lhn@gist.ac.kr

Solution Sciences, Yonsei University, Seoul 120-749, Korea. *E-mail: hanlimlee@yonsei.ac.kr Received December 21, 2010, Accepted January 21, 2011

 CO_2 adsorption on mineral sorbents has a potential to sequester CO_2 . This study used a density functional theory (DFT) study of CO_2 adsorption on barium oxide (BaO) in the presence of H_2O to determine the role of H_2O on the CO_2 adsorption properties on the $(2 \times 2; 11.05 \text{ Å} \times 11.05 \text{ Å})$ BaO (100) surface because BaO shows a high reactivity for CO_2 adsorption and the gas mixture of power plants generally contains CO_2 and H_2O . We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single CO_2 molecule, a single H_2O molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of H_2O molecules, this study also carried out the adsorption of a pair of H_2O molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that H_2O molecule does not influence on the chemisorption of CO_2 on the BaO surface, producing a stable carbonate due to the strong interaction between the CO_2 molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).

Key Words : Density functional theory, Adsorption, BaO, CO₂, H₂O

Introduction

Fossil fuels such as oil, gas, and coal are currently the most broadly employed energy sources, comprising more than 80% of global energy consumption.¹ Human activities, mainly the combustion of fossil fuels, have been the focus of attention because they primarily contribute to the increase in CO_2 emissions, regarded as the main origin of climate change. Of various sources of CO_2 emissions, the power generation is the largest source of CO_2 emissions, accounting for about 40% of the total.¹ For the reduction in CO_2 emissions from power plants, many separation technologies are available.

Among the various separation options, adsorption has become a promising candidate because of its simple operation, low corrosiveness, and overall low \cos^{2-5} Mineral carbonation (i.e., CO₂ adsorption on the mineral surface) shows the potential for CO₂ adsorption due to the formation of stable carbonates (i.e., CO₂ reacts with alkaline-earth metal oxides such as calcium oxide, magnesium oxide, and barium oxide to form a strongly bound carbonate on the mineral surface), minimizing the leakage of captured CO₂ into the atmosphere. Of alkaline-earth metal oxides, barium oxide (BaO) is selected for this study because the BaO surface provides a high reactivity that leads to the more active charge transfer from the surface sites to the CO₂ molecule, resulting from its high basicity.⁶

For CO_2 capture in the power plants, we have to consider the effect of water vapor because the flue gas mixture generally contains 8-12% vol of CO₂ and 5% vol of H₂O after pretreatment with a wash tower.^{7,8} Due to the high affinity of H₂O instead of CO₂ to the typical sorbent surface, CO₂ capture capacity of the sorbents in the presence of water vapor should be discussed. In this study, quantum mechanical calculation is used to evaluate the adsorption properties of CO₂ on the mineral surface in the presence of water vapor.

The quantum calculation of CO₂ adsorption on BaO has been already investigated,⁹⁻¹³ but the effect of H₂O molecules on the CO₂ adsorption has not been discussed. Thus, we performed a density functional theory (DFT) study of CO₂ adsorption on the BaO surface in the presence of H₂O to understand the chemical activity of the oxygen site on BaO adsorbents and to establish the molecular structures and molecular reaction mechanisms of mineral carbonation because a DFT calculation yields high accuracy for adsorption energy and geometry with low cost.^{11,14} First, this study performs the adsorption energies and geometries of single CO₂ molecule and single H₂O molecule on the BaO (100) surface in the periodic-slab model. To determine the role of H₂O molecule, we represent the adsorption characteristics of a pair of H₂O molecules on the BaO (100) surface, and then that of one CO₂ molecule and one H₂O molecule, which are bound to distant and neighboring sites on the surface. For the electronic properties of CO2 and H2O adsorption, we investigate the charge transfer of the system using Mulliken population analysis to determine the molecular reaction mechanisms. Based on the optimized geometry and adsorp-

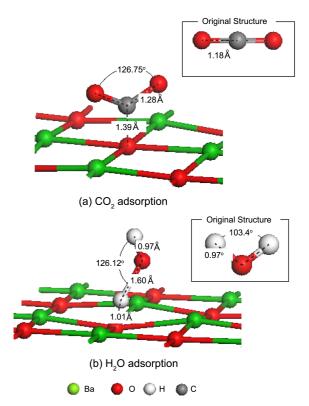
Competitive Adsorption of CO₂ and H₂O on BaO

tion energy of the systems, we will discuss the effect of H_2O on CO_2 adsorption on BaO.

Computation Details

We performed geometry optimizations using DMol³ under the following conditions: (i) the general gradient approximation (GGA) with the Perdew-Burke-Ernzerhof correlation (PBE) level for the functional option, and (ii) the double numerical basis plus *p*-polarization functions (DNP) basis set to obtain the adsorption properties.^{9,15-17}

For the quantum mechanical calculation, this study used three-dimensional periodic slab models.^{12,13} The BaO surface was exposed as a slab with four layers. Four atomic layers of optimized slab were cleaved at the (100) plane for the exposure of the surface structure. During a DFT calculation, this study chose the surface cell dimension of $(2 \times 2; 11.05 \text{ Å})$ \times 11.05 Å) in *a*- and *b*-axis, and the thickness of the vacuum (i.e., size of the unit cell perpendicular to the slab-slab thickness) was set to 20 Å in *c*-axis to avoid the effect of self-image interaction between original structure and its selfimage though the periodic boundary. All layers were geometry-optimized with the constraint of the fourth layer. The calculated model of (2×2) BaO surface provides total 64 atoms, including 32 barium atoms (Ba) and 32 oxygen atoms (O). To determine the electronic interaction between the adsorbed molecules such as CO₂ and H₂O and the BaO surface, Mulliken charge transfer was calculated.


Adsorption energies E_{ads} between the adsorbate and the adsorbent surface were determined by three single total energy calculations: (i) the geometry optimization of adsorbates, CO₂ and H₂O, (ii) the geometry optimization of the adsorbent surface slab without adsorbates, the (2 × 2) BaO surface, and (iii) the geometry optimization of the adsorbent surface slab along with adsorbates, CO₂ or H₂O on the BaO surface. The adsorption energies were determined as follows:

$$\Delta E_{adsorption} = \frac{E_{\text{BaO}+\text{CO}_2+\text{H}_2\text{O}} - (E_{\text{BaO}} + n_{\text{CO}_2} \times E_{\text{CO}_2} + n_{\text{H}_2\text{O}} E_{\text{H}_2\text{O}})}{n_{\text{CO}_2} + n_{\text{H}_2\text{O}}} \quad (1)$$

where $\Delta E_{adsorption}$ denotes the adsorption energy of CO₂ or H₂O on the BaO surface; n_{CO_2} is the number of CO₂ molecules; n_{H_2O} is the number of H₂O molecules; $E_{BaO+CO_2+H_2O}$, E_{BaO} , E_{CO_2} , and E_{H_2O} are the energy of the CO₂ or H₂O adsorbed on BaO, the energy of BaO without CO₂ and H₂O, and the energy of the single CO₂, and the energy of the single H₂O, respectively. The calculated adsorption energy will show the adsorption properties of CO₂ in the presence of H₂O on the BaO surface.

Results and Discussion

Molecular CO₂ and H₂O Adsorption on BaO. Due to the presence of water vapor in a flue gas mixture, CO₂ adsorption with water vapor remains a relevant topic for CO₂ separation because the surface of oxidic matrix is likely to be readily saturated with H^+ and OH⁻ molecules due to the

Figure 1. Optimized geometries of CO_2 adsorption (a) and H_2O adsorption (b) on the (2 × 2) BaO (100) surface.

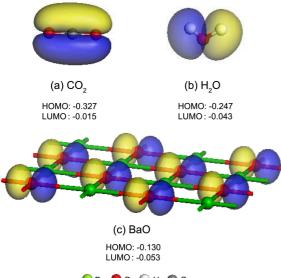
highly Lewis-basic and -acidic property of the surface oxygen sites and metal ion sites such as Ba²⁺, respectively.¹¹

For competitive CO₂ and H₂O adsorption on the BaO surface, Figure 1 firstly represents the geometry optimization of molecular CO2 adsorption and H2O adsorption on the (2×2) BaO (100). CO₂ and H₂O molecules are adsorbed on the free oxygen sites of the BaO surface due to the Lewisbasic and -acidic characteristics between the oxygen sites of BaO, and carbon of CO₂ and hydrogen of H₂O. Previous studies also represent the properties of molecular CO₂ and H₂O adsorption on the BaO surface, as shown in Table 1. The adsorption energy and geometry information obtained in our study are in good agreement with another DFT calculation.^{11,18} Figure 1a shows the optimized geometry of CO₂ adsorption on the BaO surface. In the interaction between the BaO surface and the CO₂ molecule, a charge rearrangement results in linking between the CO₂ molecule and the O site. The charged site on the surface provides the strong bond (bond length = 1.39 Å) of O_{surface}-CO₂ because the adsorbed CO₂ at the charged O site forms charged molecules.

We calculated the adsorption geometry and energy of an adsorbed H_2O molecule on BaO for the formation of barium hydroxide (Ba(OH)₂) (Figure 1b). The optimized geometry provides a bond length of $O_{surface}$ -HOH (1.01 Å), Ba_{surface}-HOH (2.90 Å), H-OHO_{surface} (i.e., one short OH of single H_2O molecule) (0.97 Å), and HO-HO_{surface} (i.e., elongated OH bond) (1.60 Å). This optimized structure indicates a partial dissociation of H_2O molecule forming a stable pro-

990 Bull. Korean Chem. Soc. 2011, Vol. 32, No. 3

Adsorb	ates	Bond length (O _{surface} -CO ₂) ^a (Å)	Bond length of adsorbate (Å)	Bond angle (°)	Adsorption energy (eV)	Net charge transfer (e)
Theory ¹¹		1.41	$1.26(O-C)^{b}$	127.5	-1.7	-0.8
	H ₂ O	1.01	1.46(O-H) ^c	126.8	-1.54	-0.4
This study	CO_2 H ₂ O	1.39 1.01	1.28(O-C) ^b 1.60(O-H) ^c	126.8 126.1	-2.72 -1.94	-0.76 -0.38


Table 1. Adsorption properties of molecular CO_2 and H_2O on the (2 × 2) BaO (100) surface

^{*a*}Distance between O_{surface} (O site on the BaO surface) and C atom of CO₂. ^{*b*}Distance between O atom and C atom within CO₂. ^{*c*}Distance between O atom and lower H atom within H₂O.

duct layer with surface sites.

In comparison of two adsorption energies of CO₂ and H₂O molecules, CO_2 adsorption (-2.72 eV) is energetically more favorable to BaO than H₂O adsorption (-1.94 eV) because the stronger interaction of CO₂-BaO system is driven by more distributed charge transfer from the surface to the adsorbate. To determine the electronic properties of CO₂ and H₂O adsorption, we investigate the charge distribution of the system using Mulliken population analysis, as shown in Table 1. During the adsorption, the charge transfer from the surface to the adsorbed molecules (CO2 and H2O) initiates and the charge of the adsorbed CO_2 and H_2O is -0.76 e and -0.36 e, respectively, indicating that a net electron donation of CO₂ molecule is higher than that of H₂O molecule. These results indicate that CO₂ adsorption tends to take place rather than H₂O adsorption on the surface. A charge transfer from the BaO surface to the CO2 molecule weakened the O-C bond within CO₂, and the CO₂ molecule was bent due to the hybridization. These results support that CO₂-BaO system provides the strong electron interaction. It is concluded that CO₂ and H₂O are chemi-sorbed on the BaO (100) surface.

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of CO₂, H₂O, and clean (2×2) BaO surface were calculated

🜔 Ва 🛑 О 💭 Н 🌒 С

Figure 2. The HOMO energy configuration and the HOMO and LUMO energy levels of CO_2 (a), H_2O (b), and clean (2 × 2) BaO surface (c).

(Figure 2). In the BaO surface, oxygen atoms have a high energy state and π^* molecular orbitals which are formed from 6s(Ba) and 2p(O) atomic orbitals. The HOMO energy level of CO₂ shows a higher energy state than that of H₂O, indicating that CO₂ can be adsorbed more actively than H₂O. This result also supports that CO₂ adsorption on BaO is stronger than H₂O adsorption.

A Pair of H₂O Adsorption on BaO. In order to evaluate CO₂ adsorption in the presence of H₂O, this study investigated a pair of H₂O adsorption on distant surface sites (distance between O atoms of H₂O molecules: 5.53 Å) and neighboring sites (distance between O atoms of H₂O molecules: 4.99 Å) on the BaO surface to determine the adsorption characteristic of H₂O molecules, as shown in Figure 3 and Table 2. The adsorption geometry and the adsorption properties of H₂O molecules presents the strong chemisorption between the oxygen site on the surface and the hydrogen molecule within water (bond length of O_{surf}-H₂O=1.01

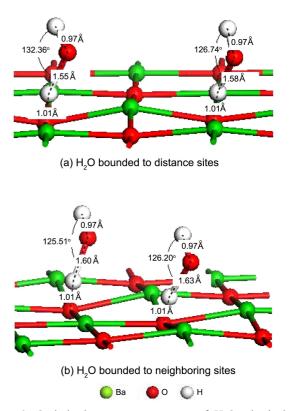
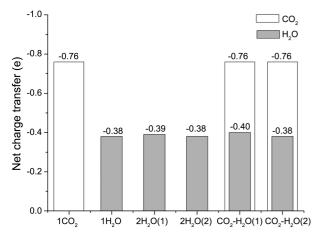



Figure 3. Optimized geometry structures of H_2O adsorbed to distant sites (a) and neighboring sites (b) on the 2 × 2 BaO (100) surface.

	Adsorption	Adsorption energy $(eV)^a$	Bond length (O _{surface} -CO ₂) (Å)	Bond length (O _{surface} -H ₂ O) (Å)
	Single CO ₂	-2.72	1.39	_
Single H ₂ O		-1.94	-	1.01
Two H ₂ O	Distant sites	-1.86	_	1.01
	Neighboring sites	-1.91	-	1.01
CO ₂ with H ₂ O	Distant sites $(1)^b$	-2.23	1.39	1.01
	Distant sites $(2)^c$	-2.23	1.39	1.02
	Neighboring sites $(1)^b$	-2.32	1.38	1.02
	Neighboring sites (2) ^c	-2.20	1.40	1.01

Table 2. Adsorption properties of a single CO₂ and H₂O, two H₂O, and CO₂ with H₂O on the (2×2) BaO (100) surface

^aAdsorption energy is calculated by Eq. (1). ^bSimultaneous CO₂ and H₂O adsorption on the BaO surface. ^cCO₂ adsorption after H₂O adsorption on the BaO surface.

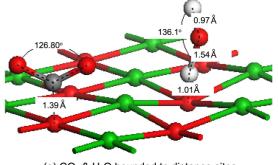
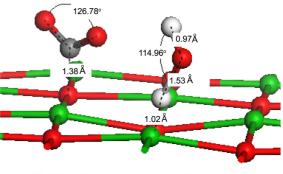


Figure 4. The net charge transfer of CO_2 and H_2O adsorption. Note that $1CO_2$ is the adsorption of a single CO_2 molecule; $1H_2O$ is the adsorption of a single H_2O molecule; $2H_2O(1)$ is the adsorption of two H_2O molecules on neighboring surface sites; $2H_2O(2)$ is the adsorption of two H_2O molecules on distant surface sites; CO_2 - $H_2O(1)$ is simultaneous CO_2 and H_2O adsorption on neighboring surface sites; CO_2 - $H_2O(1)$ is simultaneous CO_2 and H_2O adsorption on neighboring surface sites; CO_2 - $H_2O(2)$ is simultaneous CO_2 and H_2O adsorption on distant surface sites.


Å, which is shorter than that of hydrogen bond). In addition, the bond length of OH bond for both H₂O molecules on the surface is 0.97 Å and that of elongated OH bond (OH-HO_{surf}) is above 1.60 Å, indicating that the optimized geometry shows a partially dissociated water molecules forming a stable matrix with the BaO surface, which provides the same pattern of a single H₂O adsorption on the surface.¹¹

In the most stable configuration, the partial dissociative H_2O molecule adsorbs to the surface oxygen through strong chemisorption since the strong chemical interaction (adsorption energy: > -1.86 eV) made by charge donation from the surface causes the chemisorption. In addition, bond length of O_{surf} - H_2O =1.01 is short and net charge transfer takes place due to the high basicity of BaO surface, leading to the well-distributed enough charge transfer from the surface to the two H_2O molecules.

In Figure 4, H₂O interaction with the BaO surface is also verified by the analysis of Mulliken charge transfer that supports a net transfer of electron charge from the surface to

(a) CO₂ & H₂O bounded to distance sites

(b) CO₂ & H₂O bounded to neighboring sites

🜔 Ва 🛛 🔴 О 💭 Н 🍈 С

Figure 5. Geometries of simultaneous CO_2 and H_2O adsorbed to distant sites (a) and neighboring sites (b) on the 2×2 BaO (100) surface.

the adsorbates. During adsorption, the charge transfer from the surface to the H_2O molecules is observed as -0.4 e. This result indicates that the strong adsorption of two H_2O molecules on distant and neighboring surface sites was favorable.

The strong adsorption of H_2O molecules on the surface may result in a decrease in CO_2 adsorption on the mineral surface because the adsorption of a number of H_2O molecules may cause water aggregation on the surface.¹⁹ Thus, we should investigate the effect of H_2O on the CO_2 adsorption on the BaO surface.

Competitive CO₂ and H_2O Adsorption on BaO. Since H_2O can be adsorbed strongly on the BaO surface and, to the

best of our knowledge, quantum calculation of CO_2 adsorption in the presence of H_2O on the BaO surface has not been investigated, we performed a DFT calculation for the geometry and energy of the competitive CO_2 and H_2O adsorption on the (2×2) BaO (100) surface (i.e., simultaneous loading of CO_2 and H_2O molecules on the surface, which are bound to neighboring sites (distance between C atom of CO_2 and O atom of H_2O : 4.96 Å) and distant sites (distance between C atom of CO_2 and O atom of H_2O : 5.55 Å)) to determine the role of H_2O molecule in CO_2 adsorption (Figure 5). Table 2 also represents the adsorption properties of CO_2 and H_2O adsorption on BaO.

When they are close, their interaction on the surface increases slightly, but the bond length of O_{surface}-CO₂ does not significantly depend on the interaction between CO2 and H₂O due to the high interaction between the CO₂ molecule and the surface, resulting from the high charge transfer of CO₂ adsorption (-0.76 e) compared to that of H₂O adsorption (-0.40 e) (Figure 4). The value of the competitive adsorption energy (-2.32 eV) is almost close to that of the average adsorption energies of the isolated molecular adsorption of CO₂ and H₂O (-2.33 eV). (i.e., the adsorbed CO_2 is still stable in spite of the presence of H_2O , indicating that H₂O does not affect CO₂ adsorption for the formation of carbonates because a charge transfer from the surface O site and H₂O molecule to the CO₂ molecule still leads to an energetically favorable formation of surface carbonates. In addition, the charge transfer of H₂O even slightly increases whereas that of CO₂ does not change during competitive CO₂ and H₂O adsorption, supporting that the presence of a water layer does not disturb the chemical reactivity of the surface of BaO to form a carbonate.

Since H_2O adsorption on the BaO surface is strong, we investigated CO_2 adsorption after H_2O adsorption on the BaO surface (Table 2). The energy of CO_2 adsorption after H_2O adsorption process is not quite different from that of simultaneous CO_2 and H_2O adsorption, indicating that H_2O does not affect CO_2 adsorption although H_2O is strongly adsorbed on the surface initially.

An analysis of surface interaction energies and charge transfer can ensure the energetic feasibility of CO_2 adsorption in the presence of H_2O on the BaO surface. Compared to our previous study of interactive CO_2 adsorption, which shows that the interaction of CO_2 molecules for the surface adsorption affects CO_2 adsorption on the BaO surface, H_2O does not significantly affect on the CO_2 adsorption.¹⁸

In conclusion, we investigated the competitive adsorption of CO_2 and H_2O molecules on the BaO surface to determine the role of H_2O on CO_2 adsorption. A DFT study using Dmol³ represented molecular structures and energies of CO_2 adsorption in the presence of H_2O on the BaO (100) surface. Electronic stabilization of the CO_2 molecule on the BaO surface relies on the affinity of CO_2 for the O site because of their high interaction driven by the strong charge distribution. The results of the DFT calculation indicate that CO_2 molecule and H₂O molecule are strongly adsorbed on the BaO surface, which forms a stable surface carbonate and a barium hydroxide, respectively. The chemisorption of two H₂O molecules on distant and neighboring surface sites was also favorable on the adsorption on the surface. This study showed that the adsorption of CO₂ does not depend on the presence of H₂O in spite of the strong adsorption of H₂O on the BaO surface. These DFT computations provide the basic adsorption mechanism of CO₂ on BaO minerals in the presence of H₂O for CO₂ sequestration, forming barium carbonate which can be permanent storage species under realistic gas-solid phase reaction.

Acknowledgments. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2006-3203.

References

- 1. International Energy Agency OECD/IEA, Paris. 2002a.
- Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. Fuel 2007, 86, 2204.
- Meisen, A.; Shuai, X. S. Energy Conversion and Management 1997, 38, S37.
- 4. Niswander, R. H.; Edwards, D. J.; Dupart, M. S.; Tse, J. P. Separation Science and Technology **1993**, 28, 565.
- Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Industrial & Engineering Chemistry Research 1999, 38, 3917.
- 6. Freund, H. J.; Roberts, M. W. Surface Science Reports 1996, 25, 225.
- Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M. Adsorption-Journal of the International Adsorption Society 2008, 14, 415.
- Na, B. K.; Koo, K. K.; Eum, H. M.; Lee, H.; Song, H. K. Korean Journal of Chemical Engineering 2001, 18, 220.
- 9. Broqvist, P.; Gronbeck, H.; Fridell, E.; Panas, I. Journal of *Physical Chemistry B* **2004**, *108*, 3523.
- Karlsen, E. J.; Nygren, M. A.; Pettersson, L. G. M. Journal of Physical Chemistry B 2003, 107, 7795.
- 11. Tutuianu, M.; Inderwildi, O. R.; Bessler, W. G.; Warnatz, J. Journal of Physical Chemistry B 2006, 110, 17484.
- Broqvist, P.; Panas, I.; Gronbeck, H. Journal of Physical Chemistry B 2005, 109, 15410.
- Broqvist, P.; Panas, I.; Fridell, E.; Persson, H. Journal of Physical Chemistry B 2002, 106, 137.
- 14. Gronbeck, H. Journal of Physical Chemistry B 2006, 110, 11977.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Chemical Applications of Density-Functional Theory 1996, 629, 453.
- 16. DMol³ Accelrys, Inc.: San Diego 2005.
- 17. Perdew, J. P.; Burke, K.; Ernzerhof, M. *Physical Review Letters* 1996, 77, 3865.
- Kwon, S.; Hwang, J.; Lee, H.; Lee, W. R. Bulletin of the Korean Chemical Society 2010, 31, 2219.
- 19. Odelius, M. Physical Review Letters 1999, 82, 3919.