DOI QR코드

DOI QR Code

Theory of X-ray microcomputed tomography in dental research: application for the caries research

치과 분야 연구에서 미세전산화 단층촬영술의 이론: 치아우식증에 대한 적용

  • Park, Young-Seok (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Bae, Kwang-Hak (Department of Preventive and Public Health Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Chang, Ju-Hea (Clinic for Persons with Disabilities, Seoul National University Dental Hospital) ;
  • Shon, Won-Jun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 박영석 (서울대학교 치의학대학원 구강해부학교실 및 치학연구소) ;
  • 배광학 (서울대학교 치의학대학원 예방치학교실 및 치학연구소) ;
  • 장주혜 (서울대학교 치과병원 장애인클리닉) ;
  • 손원준 (서울대학교 치의학대학원 치과보존학교실 및 치학연구소)
  • Received : 2011.01.19
  • Accepted : 2011.03.01
  • Published : 2011.03.31

Abstract

Caries remains prevalent throughout modern society and is the main disease in the field of dentistry. Although studies of this disease have used diverse methodology, recently, X-ray microtomography has gained popularity as a non-destructive, 3-dimensional (3D) analytical technique, and has several advantages over the conventional methods. According to X-ray source, it is classified as monochromatic or polychromatic with the latter being more widely used due to the high cost of the monochromatic source despite some advantages. The determination of mineral density profiles based on changes in X-ray attenuation is the principle of this method and calibration and image processing procedures are needed for the better image and reproducible measurements. Using this tool, 3D reconstruction is also possible and it enables to visualize the internal structures of dental caries. With the advances in the computer technology, more diverse applications are being studied, such automated caries assessment algorithms.

치아우식증은 현대 사회에서 여전히 유병률이 높으며, 치과 분야의 주요 상병으로 자리잡고 있다. 치아우식증에 대한 연구에 매우 다양한 방법들이 동원되고 있으나, 최근 미세전산화 단층촬영은 비파괴적인 3차원 분석 기술로서 인기를 얻어 왔으며, 기존의 방법들에 비해 다양한 장점들을 가지고 있다. 미세전산화 단층촬영술은 X선원의 종류에 따라, 모노크로매틱 혹은 폴리크로매틱으로 나뉘어지고, 전자의 경우 몇몇 장점에도 불구하고, 고가의 장비를 요구하므로 후자가 훨씬 널리 사용된다. 투과방사선량의 감소에 따라 결정되는 미네랄 밀도의 차이가 기본 원리이며, 보다 좋은 이미지와 재현 가능한 측정을 위해서는 장비의 교정과 이미지 보정 작업등이 요구된다. 또한, 미세전산화 단층촬영술을 이용하면, 치아우식 병소의 3차원적인 재건이 가능하며, 병소의 내부 구조를 가시화할 수 있다. 최근 컴퓨터 기술의 발전과 더불어 다양한 응용이 시도되고 있는데, 자동화된 충치의 정량적 분석 알고리즘 등이 그 예에 해당된다.

Keywords

References

  1. Kaste LM, Selwitz RH, Oldakowski RT, Brunelle JA, Winn D, Brown L. Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988-1991. J Dent Res 1996; 75(spec issue):631-641. https://doi.org/10.1177/002203459607502S03
  2. Winn DM, Brunelle JA, Selwitz RH, Kaste LM, Oldakowski RJ, Kingman A, Brown LJ. Coronal and root caries in the dentition of adults in the United States, 1988-1991. J Dent Res 1996;75(spec issue): 642-651. https://doi.org/10.1177/002203459607502S04
  3. Minstry of Health and Welfare. National survey of oral health in 2006. Seoul, Korea Minsitry of Health and Welfare.
  4. Fontana M, Young DA, Wolff MS, Pitts NB, Longbottom C. Defining dental caries for 2010 and beyond. Dent Clin North Am 2010;54:423-440. https://doi.org/10.1016/j.cden.2010.03.007
  5. Keene HJ. “History of dental caries in human populations: the First Million Years”animal models in cariology. In: Tanzer JM, editor. Proceedings, Animal Models in Cariology. Washington, DC: Information Retrieval Inc 1981:23-40.
  6. Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ 2001;65:960-968.
  7. Featherstone JD. The continuum of dental caries-evidence for a dynamic disease process. J Dent Res 2004;83(Spec Iss C):C39-C42. https://doi.org/10.1177/154405910408301S08
  8. Kidd EA, Fejerskov O. What constitutes dental caries? histopathology of caries enamel and dentin related to the actions of cariogenic biofilms. J Dent Res 2004;83(Spec Iss C): C35-C38. https://doi.org/10.1177/154405910408301S07
  9. Pitts NB. Modern concepts of caries measurement. J Dent Res 2004;83(Spec Iss C):C43-C47. https://doi.org/10.1177/154405910408301S09
  10. Schwass DR, Swain MV, Purton DG, Leichter JW. A system of calibrating microtomography for use in caries research. Caries Res 2009;43:314-321. https://doi.org/10.1159/000226230
  11. de Josselin De Jong E, Sundstrom F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Mansson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res 1995;29:2-7. https://doi.org/10.1159/000262032
  12. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973;46:1016-1022. https://doi.org/10.1259/0007-1285-46-552-1016
  13. Wong FS, Willmott NS, Davis GR. Dentinal carious lesion in three dimensions. Int J Paediatr Dent 2006;16:419-423. https://doi.org/10.1111/j.1365-263X.2006.00766.x
  14. Elliott JC, Dover SD. X-ray microtomography. J Microsc 1982;126:211-213. https://doi.org/10.1111/j.1365-2818.1982.tb00376.x
  15. Elliott JC, Davis GR, Anderson P, Wong FSL, Dowker SEP, Mercer CE. Application of laboratory microtomography to the study of mineralised tissues. Anal Quim 1997;93:77-82.
  16. Wong FSL, Anderson P, Fan H, Davis GR. X-ray microtomographic study of mineral concentration distribution in deciduous enamel. Arch Oral Biol 2004;49:937-944. https://doi.org/10.1016/j.archoralbio.2004.05.011
  17. Lo EC, Zhi QH, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent 2010;38:352-359. Epub 2010 Jan 14. https://doi.org/10.1016/j.jdent.2010.01.001
  18. Davis GR, Wong FS. X-ray microtomography of bones and teeth. Physiol Meas 1996;17:121-146. https://doi.org/10.1088/0967-3334/17/3/001
  19. Efeoglu N, Wood DJ, Efeoglu C. Thirty-five percent carbamide peroxide application causes in vitro demineralization of enamel. Dent Mater 2007;23:900-904. https://doi.org/10.1016/j.dental.2006.06.032
  20. Engelke K, Graeff W, Meiss L, Hahn M, Delling G. High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Invest Radiol 1993;28:341-349. https://doi.org/10.1097/00004424-199304000-00016
  21. Park YS, Yi KY, Lee IS, Jung YC. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin Oral Implants Res 2005;16:156-160. Erratum in: Clin Oral Implants Res 2005;16:258. https://doi.org/10.1111/j.1600-0501.2004.01083.x
  22. Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2005;20:31-38.
  23. Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721-728. https://doi.org/10.1016/j.dental.2008.11.014
  24. Hsu DJ, Darling CL, Lachica MM, Fried D. Nondestructive assessment of the inhibition of enamel demineralization by $CO_2$ laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt 2008;13:054027. https://doi.org/10.1117/1.2976113
  25. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater 2009;90:802-812. https://doi.org/10.1002/jbm.b.31349
  26. Wefel JS, Heilman JR, Jordan TH. Comparisons of in vitro root caries models. Caries Res 1995;29:204-209. https://doi.org/10.1159/000262070
  27. Ten Bosch JJ, Angmar-Mansson B. A review of quantitative methods for studies of mineral content of intraoral caries lesions. J Dent Res 1991;70:2-14. https://doi.org/10.1177/00220345910700010301
  28. Taylor AM, Satterthwaite JD, Ellwood RP, Pretty IA. An automated assessment algorithm for micro-CT images of occlusal caries. Surgeon 2010;8:334-340. https://doi.org/10.1016/j.surge.2010.06.007
  29. Hahn SK, Kim JW, Lee SH, Kim CC, Hahn SH, Jang KT. Microcomputed tomographic assessment of chemomechanical caries removal. Caries Res 2004;38:75-78. https://doi.org/10.1159/000073924
  30. Huysmans MC, Longbottom C. The challenges of validating diagnostic methods and selecting appropriate gold standards. J Dent Res 2004;83:C48-C52. https://doi.org/10.1177/154405910408301S10
  31. Flannery BP, Deckman HW, Roberge WC, D'Amico KL. Three-dimensional X-ray microtomography. Science 1987;237:1439-1444. https://doi.org/10.1126/science.237.4821.1439
  32. Huang TT, Jones AS, He LH, Darendeliler MA, Swain MV. Characterisation of enamel white spot lesions using x-ray micro-tomography. J Dent 2007;35:737-743. https://doi.org/10.1016/j.jdent.2007.06.001
  33. Efeoglu N, Wood D, Efeoglu C. Microcomputerised tomography evaluation of 10% carbamide peroxide applied to enamel. J Dent 2005;33:561-567. https://doi.org/10.1016/j.jdent.2004.12.001
  34. Kinney JH, Marshall GW Jr, Marshall SJ. Three-dimensional mapping of mineral densities in carious dentin: theory and method. Scanning Microsc 1994;8:197-205.
  35. Kovacs M, Danyi R, Erdelyi M, Fejerdy P, Dobo-Nagy C. Distortional effect of beam-hardening artefacts on microCT: a simulation study based on an in vitro caries model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:591-599. https://doi.org/10.1016/j.tripleo.2009.06.009
  36. Kinney JH, Balooch M, Haupt DL Jr, Marshall SJ, Marshall GW Jr. Mineral distribution and dimensional changes in human dentin during demineralization. J Dent Res 1995;74:1179-1184. https://doi.org/10.1177/00220345950740050601
  37. Willmott NS, Wong FS, Davis GR. An X-ray micro tomographystudy on the mineral concentration of carious dentine removed during cavity preparation in deciduous molars. Caries Res 2007;41:129-134. https://doi.org/10.1159/000098046
  38. van de Casteele E, Van Dyck D, Sijbers J, Raman E. An energy-based beam hardening model in tomography. Phys Med Biol 2002;47:4181-4190. https://doi.org/10.1088/0031-9155/47/23/305
  39. Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;83:510-516. https://doi.org/10.1016/S1079-2104(97)90155-4
  40. Dowker SE, Elliott JC, Davis GR, Wassif HS. Longitudinal study of the three-dimensional development of subsurface enamel lesions during in vitro demineralisation. Caries Res 2003;37:237-245. https://doi.org/10.1159/000070865
  41. Dowker SE, Elliott JC, Davis GR, Wilson RM, Cloetens P. Synchrotron X-ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel. Caries Res 2004;38:514-522. https://doi.org/10.1159/000080580
  42. Coljin AP, Zbijewski W, Sasov A, Beckman FJ. Experimental validation of a rapid Monte Carlo based micro-CT simulator. Phys Med Biol 2004;49:4321-4333. https://doi.org/10.1088/0031-9155/49/18/009
  43. Sidky EY, Zou Y, Pan X. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods. Phys Med Biol 2004;49:2293-2303. https://doi.org/10.1088/0031-9155/49/11/012
  44. Kyriakou Y, Kalender WA. X-Ray scatter data for flat-panel detector CT. Phys Med 2007;23:3-15. https://doi.org/10.1016/j.ejmp.2006.12.004
  45. Davis GR, Elliott JC. Artefacts in X-ray microtomography of materials. Mater Sci Technol 2006;22:1011-1018. https://doi.org/10.1179/174328406X114117
  46. Hammersberg P, Mangard M. Correction for beam hardening artefacts in computerised tomography. J X-ray Sci Technol 1998;8:75-93.
  47. Joseph PM, Spital RD. The effects of scatter in X-ray computed tomography. Med Phys 1982;9:464-472. https://doi.org/10.1118/1.595111
  48. Malusek A, Seger MM, Sandborg M, Carlsson G. Effect of scatter on reconstructed image quality in cone beam computed tomography: evaluation of a scatter-reduction optimisation function. Radiat Prot Dosimetry 2005;144:337-340. https://doi.org/10.1093/rpd/nch541
  49. Elliott JC, Wong FS, Anderson P, Davis GR, Dowker SE. Determination of mineral concentration in dental enamel from X-ray attenuation measurements. Connect Tissue Res 1998;38:61-72. discussion 73-79. https://doi.org/10.3109/03008209809017022
  50. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 2002;17:1372-1382. https://doi.org/10.1359/jbmr.2002.17.8.1372
  51. Wong FS, Elliott JC. Theoretical explanation of the relationship between backscattered electron and X-ray linear attenuation coefficients in calcified tissues. Scanning 1997;19:541-546. https://doi.org/10.1002/sca.4950190803
  52. Schweizer S, Hattendorf B, Schneider P, Aeschlimann B, Gauckler L, Muller R, Gunther D. Preparation and characterization of calibration standards for bone density determination by micro-computed tomography. Analyst 2007;132:1040-1045. https://doi.org/10.1039/B703220J,Paper
  53. He LH, Standard OC, Huang TT, Latella BA, Swain MV. Mechanical behaviour of porous hydroxyapatite. Acta Biomater 2008;4:577-586. https://doi.org/10.1016/j.actbio.2007.11.002
  54. Zou W, Gao J, Jones AS, Hunter N, Swain MV. Characterisation of a novel calibration method for mineral density determination of dentine by Xray micro-tomography. Analyst 2009;134:72-79. https://doi.org/10.1039/B806884D
  55. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation micro-tomography. Med Phys 2002;29:2672-2681. https://doi.org/10.1118/1.1513161
  56. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 1977;12:545-551. https://doi.org/10.1097/00004424-197711000-00015
  57. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 1980;4:493-500. https://doi.org/10.1097/00004728-198008000-00018
  58. Manly RS, Hodge HC, Ange LE: Density and refractive index studies of dental hard tissues. II. Density distribution curves. J Dent Res 1939;18:203-211. https://doi.org/10.1177/00220345400190050601
  59. Clementino-Luedemann TN, Dabanoglu A, Ilie N, Hickel R, Kunzelmann KH. Micro-computed tomographic evaluation of a new enzyme solution for caries removal in deciduous teeth. Dent Mater J 2006;25:675-683. https://doi.org/10.4012/dmj.25.675
  60. Clementino-Luedemann TN, Kunzelmann KH. Mineral concentration of natural human teeth by a commercial micro-CT. Dent Mater J 2006;25:113-119. https://doi.org/10.4012/dmj.25.113
  61. Bowman SM, Zeind J, Gibson LJ, Hayes WC, McMahon TA. The tensile behavior of demineralized bovine cortical bone. J Biomech 1996;29:1497-1501. https://doi.org/10.1016/0021-9290(96)84546-5
  62. Postnov AA, Vinogradov AV, Van Dyck D, Saveliev SV, de Clerck NM. Quantitative analysis of bone mineral content by X-ray microtomography. Physiol Meas 2003;24:165-178. https://doi.org/10.1088/0967-3334/24/1/312
  63. Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 2000;15:1587-1595. https://doi.org/10.1359/jbmr.2000.15.8.1587
  64. Zheng Y, Lu WW, Zhu Q, Qin L, Zhong S, Leong JC. Variation in bone mineral density of the sacrum in young adults and its significance for sacral fixation. Spine 2000;25:353-357. https://doi.org/10.1097/00007632-200002010-00016
  65. Chueh HS, Tsai WK, Fu HM, Chen JC. Evaluation of the quantitative capability of a homemade cone-beam micro computed tomography system. Comput Med Imaging Graph 2006;30:349-355. https://doi.org/10.1016/j.compmedimag.2006.09.007|
  66. Bonse U, Busch F, Gunnewig O, Beckmann F, Pahl R, Delling G, Hahn M, Graeff W. 3D computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(-4) energy resolution. Bone Miner 1994;25:25-38. https://doi.org/10.1016/S0169-6009(08)80205-X
  67. Neves Ade A, Coutinho E, Vivan Cardoso M, Jaecques SV, Van Meerbeek B. Micro-CT based quantitative evaluation of caries excavation. Dent Mater 2010;26:579-588. Epub 2010 Mar 29. https://doi.org/10.1016/j.dental.2010.01.012
  68. Brooks RA, Di Chiro G. Beam hardening in X-ray reconstructive tomography. Phys Med Biol 1976;21:390-398. https://doi.org/10.1088/0031-9155/21/3/004
  69. Van de casteele E, Van dyck D, Sijbers J, Raman E. A model-based correction method for beam hardening artefacts in X-ray microtomography. J X-ray Sci Technol 2004;12:43-57.
  70. Van de Casteele E, Van Dyck D, Sijbers J, Raman E. The effect of beam hardening on resolution in X-ray microtomography. Med Imag 2004;5370:2089-2096. https://doi.org/10.1117/12.535263
  71. Davis GR. Image quality and accuracy in X-ray micro-tomography. Proc SPIE 1999;3772:147-155. https://doi.org/10.1117/12.363716
  72. Russ J. The image processing handbook. Boca Raton. CRC Press 2007:817.
  73. Sijbers J, Postnov A. Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 2004;49:N247-N253. https://doi.org/10.1088/0031-9155/49/14/N06
  74. Smith BD. Image reconstruction from cone-beam projections: necessary and sufficient condition and reconstruction method. IEEE Trans Med Imaging 1985;4:14-25. https://doi.org/10.1109/TMI.1985.4307689
  75. Wang B, Hong Liub, Shiying Zhaoc and Ge Wangd Feldkamp-type image reconstruction from equiangular data. J Xray Sci Technol 2001;9:113-120.
  76. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater 2007;23:539-548. https://doi.org/10.1016/j.dental.2006.03.013
  77. Jan J. Medical image processing, reconstruction and restoration: concepts and methods. New York: Taylor & Francis; 2006. p710.
  78. Dufresne T. Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging. Technol Health Care 1998;6:351-359.

Cited by

  1. Current status of dental caries diagnosis using cone beam computed tomography vol.41, pp.2, 2011, https://doi.org/10.5624/isd.2011.41.2.43
  2. Comparative efficacy of photo-activated disinfection and calcium hydroxide for disinfection of remaining carious dentin in deep cavities: a clinical study vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.195