DOI QR코드

DOI QR Code

The effect of the strength and wetting characteristics of Bis-GMA/TEGDMA-based adhesives on the bond strength to dentin

2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane을 함유한 상아질 접착레진의 물성이 접착강도에 미치는 영향

  • Park, Eun-Sook (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Kim, Chang-Keun (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Bae, Ji-Hyun (Department of Conservative Dentistry, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 박은숙 (서울대학교 치의학대학원 치과보존학교실) ;
  • 김창근 (중앙대학교 공과대학) ;
  • 배지현 (분당서울대학교병원 치과보존과) ;
  • 조병훈 (서울대학교 치의학대학원 치과보존학교실)
  • Received : 2011.03.02
  • Accepted : 2011.03.06
  • Published : 2011.03.31

Abstract

Objectives: This study investigated the effect of the strength and wetting characteristics of adhesives on the bond strength to dentin. The experimental adhesives containing various ratios of hydrophobic, low-viscosity Bis-M-GMA, with Bis-GMA and TEGDMA, were made and evaluated on the mechanical properties and bond strength to dentin. Materials and Methods: Five experimental adhesives formulated with various Bis-GMA/Bis-MGMA/TEGDMA ratios were evaluated on their viscosity, degree of conversion (DC), flexural strength (FS), and microtensile bond strength (MTBS). The bonded interfaces were evaluated with SEM and the solubility parameter was calculated to understand the wetting characteristics of the adhesives. Results: Although there were no significant differences in the DC between the experimental adhesives at 48 hr after curing (p > 0.05), the experimental adhesives that did not contain Bis-GMA exhibited a lower FS than did those containing Bis-GMA (p < 0.05). The experimental adhesives that had very little to no TEGDMA showed significantly lower MTBS than did those containing a higher content of TEGDMA (p < 0.05). The formers exhibited gaps at the interface between the adhesive layer and the hybrid layer. The solubility parameter of TEGDMA approximated those of the components of the primed dentin, rather than Bis-GMA and Bis-M-GMA. Conclusions: To achieve a good dentin bond, a strong base monomer, such as Bis-GMA, cannot be completely replaced by Bis-M-GMA for maintaining mechanical strength. For compatible copolymerization between the adhesive and the primed dentin as well as dense cross-linking of the adhesive layer, at least 30% fraction of TEGDMA is also needed.

연구목적: 치과용 접착제에서 기저단량체로 사용되는 Bis-GMA를 Bis-M-GMA로 대체한 접착레진이, Bis-GMA/TEGDMA 를 사용한 접착제와 비교할 만한 물성과 접착강도를 가지는지 알아보고자 하였다. 연구 재료 및 방법: 다양한 구성비의 Bis-GMA, Bis-M-GMA 및 TEGDMA 를 함유한 접착레진을 제작하여, 점도(${\eta}$), 중합률(DC) 및 굴곡강도(FS)를 측정하고, 상아질에 대한 미세인장접착강도(MTBS)를 측정하였다. 해석을 위해 각 단량체들의 용해도 상수(${\delta}_t$)를 비교하였고, 접착계면을 주사전자현미경으로 관찰하였다. 결과: Bis-M-GMA의 점도는 3.65 Pa s로 크게 감소하였다. Bis-GMA를 함유하지 않는 접착레진은 Bis-GMA를 함유한 접착레진에 비해 낮은 굴곡강도를 보였다(p < 0.05). TEGDMA 함량이 낮은 접착레진은 TEGDMA 함량이 높은 접착레진에 비해 낮은 미세인장접착강도를 보였으며(p < 0.05), 주사전자현미경 사진에서 균열이나 틈이 관찰되었다. 결론: 높은 접착강도를 얻기 위해서는 접착레진의 높은 굴곡강도와 초기 중합률 뿐 아니라, 접착레진과 primer 처리 된 상아질 사이의 용해도 상수의 적합성도 요구되었다.

Keywords

References

  1. Schwartz RS, Summitt JB, Robbins JW. Fundamentals of operative dentistry.1st ed. Chicago: Quintessence Publishing Co; 1996. p162-167.
  2. Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P, Vanherle G. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 1993;72:1434-1442. https://doi.org/10.1177/00220345930720101401
  3. Dickens SH, Cho BH. Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents. Dent Mater 2005;21:354-364. https://doi.org/10.1016/j.dental.2004.05.007
  4. Bae JH, Cho BH, Kim JS, Kim MS, Lee IB, Son HH, Um CM, Kim CK, Kim OY. Adhesive layer properties as a determinant of dentin bond strength. J Biomed Mater Res B Appl Biomater 2005;74:822-828. https://doi.org/10.1002/jbm.b.30320
  5. Miyazaki M, Ando S, Hinoura K, Onose H, Moore BK. Influence of filler addition to bonding agents on shear bond strength to bovine dentin. Dent Mater 1995;11:234-238. https://doi.org/10.1016/0109-5641(95)80055-7
  6. Montes MA, de Goes MF, da Cunha MR, Soares AB. A morphological and tensile bond strength evaluation of an unfilled adhesive with low-viscosity composites and a filled adhesive in one and two coats. J Dent 2001;29:435-441. https://doi.org/10.1016/S0300-5712(01)00037-9
  7. Conde MC, Zanchi CH, Rodrigues-Junior SA, Carreno NL, Ogliari FA, Piva E. Nanofiller loading level: influence on selected properties of an adhesive resin. J Dent 2009;37:331-335. https://doi.org/10.1016/j.jdent.2009.01.001
  8. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 1986;20:121-131. https://doi.org/10.1002/jbm.820200111
  9. Cadenaro M, Breschi L, Antoniolli F, Navarra CO, Mazzoni A, Tay FR, Di Lenarda R, Pashley DH. Degree of conversion of resin blends in relation to ethanol content and hydrophilicity. Dent Mater 2008;24:1194-1200. https://doi.org/10.1016/j.dental.2008.01.012
  10. Ogliari FA, Ely C, Lima GS, Conde MC, Petzhold CL, Demarco FF, Piva E. Onium salt reduces the inhibitory polymerization effect from an organic solvent in a model dental adhesive resin. J Biomed Mater Res B Appl Biomater 2008;86:113-118. https://doi.org/10.1002/jbm.b.30995
  11. Guo X, Wang Y, Spencer P, Ye Q, Yao X. Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin. Dent Mater 2008;24:824-831. https://doi.org/10.1016/j.dental.2007.10.003
  12. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, Yiu CK, Carrilho MR. Water sorption/solubility of dental adhesive resins. Dent Mater 2006;22:973-980. https://doi.org/10.1016/j.dental.2005.11.020
  13. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105:97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  14. Kim JW, Kim LU, Kim CK, Cho BH, Kim OY. Characteristics of novel dental composites containing 2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy)phenyl] propane as a base resin. Biomacromolecules 2006;7:154-160. https://doi.org/10.1021/bm050491l
  15. Navarra CO, Cadenaro M, Armstrong SR, Jessop J, Antoniolli F, Sergo V, Di Lenarda R, Breschi L. Degree of conversion of Filtek Silorane Adhesive System and Clearfil SE Bond within the hybrid and adhesive layer: an in situ Raman analysis. Dent Mater 2009;25:1178-1185. https://doi.org/10.1016/j.dental.2009.05.009
  16. Ge J, Trujillo M, Stansbury J. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater 2005;21:1163-1169. https://doi.org/10.1016/j.dental.2005.02.002
  17. Rueggeberg FA, Hashinger DT and Fairhurst CW. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 1990;6:241-249. https://doi.org/10.1016/S0109-5641(05)80005-3
  18. Hoy KL. Tables of solubility parameters. Solvent and coatings materials research and development department: Union carbide corporation; 1985.
  19. Van Krevelen DW. Properties of polymers, 3rd ed. N.Y.: Elsevier science publishing co., Inc.; 1990.
  20. Kalachandra S. Sankarapandian M, Shobha HK, Taylor DF, Mcgrath JE. Influence of hydrogen bonding on properties of Bis-GMA analogues. J Mater Sci Mater Med 1997;8: 283-286. https://doi.org/10.1023/A:1018508227774
  21. Pereira SG, Nunes TG, Kalachandra S. Low viscosity dimethacrylate comonomer compositions [Bis-GMA and CH3Bis-GMA] for novel dental composites; analysis of the network by stray-field MRI, solid-state NMR and DSC & FTIR. Biomaterials 2002;23:3799-3806. https://doi.org/10.1016/S0142-9612(02)00094-7
  22. Pereira SG, Osorio R, Toledano M, Nunes TG. Evaluation of two Bis-GMA analogues as potential monomer diluents to improve the mechanical properties of light-cured composite resins. Dent Mater 2005;21:823-830. https://doi.org/10.1016/j.dental.2005.01.018
  23. Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc 2003;69: 726-731.
  24. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005;26:6449-6459. https://doi.org/10.1016/j.biomaterials.2005.04.052
  25. Nishitani Y, Yoshiyama M, Donnelly AM, Agee KA, Sword J, Tay FR, Pashley DH. Effects of resin hydrophilicity on dentin bond strength. J Dent Res 2006;85:1016-1021. https://doi.org/10.1177/154405910608501108
  26. Asmussen E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 1982;90:484-489. https://doi.org/10.1111/j.1600-0722.1982.tb00766.x
  27. Seong SR, Seo DK, Lee IB, Son HH, Cho BH. Effect of exponential curing of composite resin on the microtensile dentin bond strength of adhesives. J Kor Acad Cons Dent 2010;35:125-133. https://doi.org/10.5395/JKACD.2010.35.2.125
  28. Shin HJ, Song CK, Park SH, Kim JW, Cho KM. Physical properties of different self-adhesive resin cements and their shear bond strength on lithium disilicate ceramic and dentin. J Kor Acad Cons Dent 2009;34:184-191. https://doi.org/10.5395/JKACD.2009.34.3.184
  29. Ko EJ, Shin DH. Difference in bond strength according to filling techniques and cavity walls in box-type occlusal composite resin restoration. J Kor Acad Cons Dent 2009;34:350-356. https://doi.org/10.5395/JKACD.2009.34.4.350
  30. Erickson RL. Surface interactions of dentin adhesive materials. Oper Dent 1992;(Supplement 5):81-94.
  31. Asmussen E, Uno S. Solubility parameters, fractional polarities, and bond strengths of some intermediary resins used in dentin bonding. J Dent Res 1993;72:558-565. https://doi.org/10.1177/00220345930720030101
  32. Miller RG, Bowles CQ, Chappelow CC, Eick JD. Application of solubility parameter theory to dentin-bonding systems and adhesive strength correlations. J Biomed Mater Res 1998;41:237-243. https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<237::AID-JBM8>3.0.CO;2-J
  33. Hildebrand JH. The solubility of non-electrolytes. New York: Reinhold; 1936.
  34. Vaidyanathan TK, Vaidyanathan J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: a critical review. J Biomed Mater Res B App Biomater 2009:88:558-578. https://doi.org/10.1002/jbm.b.31253
  35. Asmussen E, Hansen EK, Peutzfeldt A. Influence of the solubility parameter of intermediary resin on the effectiveness of the Gluma bonding system. J Dent Res 1991;70:1290-1293. https://doi.org/10.1177/00220345910700091101
  36. Finger WJ, Inoue M, Asmussen E. Effect of wettability of adhesive resins on bonding to dentin. Am J Dent 1994;7:35-38.