DOI QR코드

DOI QR Code

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific

북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성

  • Kim, Kyeong-Hong (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Son, Ju-Won (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Son, Seung-Kyu (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Chi, Sang-Bum (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Hyun, Jung-Ho (Department of Environmental Marine Sciences, College of Science and Technology Hanyang University)
  • 김경홍 (한국해양연구원 심해.해저자원연구부) ;
  • 손주원 (한국해양연구원 심해.해저자원연구부) ;
  • 손승규 (한국해양연구원 심해.해저자원연구부) ;
  • 지상범 (한국해양연구원 심해.해저자원연구부) ;
  • 현정호 (한양대학교 과학기술대학 해양환경과학과)
  • Received : 2010.10.18
  • Accepted : 2010.12.21
  • Published : 2011.03.30

Abstract

We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

Keywords

References

  1. 김경홍, 손승규, 손주원, 주세종 (2006) 해양퇴적물내 총탄소 및 유기탄소의 분석기법 고찰. 한국해양공학회지 9:235-242
  2. 김동성, 현정호, 최진우, 이경용 (2000) 북동태평양 심해 퇴적물에 서식하는 중형 저서 생물군집의 위도별 특징. 한국해양학회지 바다 5:245-254
  3. 김동성, 민원기, 이경용, 김기현 (2004) 북동 태평양 심해저 C-C 해역에 서식하는 중형저서동물 군집. Ocean and Polar Res 26:265-272 https://doi.org/10.4217/OPR.2004.26.2.265
  4. 김형직, 김동선, 형기성, 김경홍, 손주원, 황상철, 지상범, 김기현, 김부근 (2008) 북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동. 한국해양학회지 바다 13:200-209
  5. 민원기, 김동성, 김웅서 (2004) 북동태평양 심해저에 서식하는 중형저서동물 군집의 위도별 분포특성. Ocean and Polar Res 26:255-263 https://doi.org/10.4217/OPR.2004.26.2.255
  6. 박흥식, 지상범, 백상규, 김웅서 (2004) 북동 태평양 심해저 C-C 해역의 퇴적환경과 대형저서생물 분포와의 관계. Ocean and Polar Res 26:311-321 https://doi.org/10.4217/OPR.2004.26.2.311
  7. 손승규, 현정호, 박정기, 지상범, 김기현 (2001) 북동적도태평양 표층 수온변화에 따른 화학적 환경특성. 한국환경공학회지 4:24-37
  8. 지상범, 강정극, 오재경, 손승규, 박정기 (2003) 북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경. Ocean and Polar Res 25:257-267 https://doi.org/10.4217/OPR.2003.25.3.257
  9. 최진우, 김동성, 현정호, 이창훈 (2004) 북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집. Ocean and Polar Res 26:367-376 https://doi.org/10.4217/OPR.2004.26.2.367
  10. 현정호, 김경홍, 지상범, 문재운 (1998) 북동적도 태평양 KODOD 97-2 해역 심해저 퇴적물내의 ATP 분포. 한국해양학회지 바다 3:142-148
  11. 현정호, 김경홍, 권개경, 이정현, 이홍금, 김상진, 김기현 (2002) 아데노신 3인산(ATP; Adenosine-5' triphosphate)을 이용한 심해저 및 연안퇴적토의 총 미생물 생체량 측정. 미생물학회지 38:119-126
  12. Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267:696-698 https://doi.org/10.1038/267696a0
  13. Amann RI, Ludwig W, Schleifer KH (1995) Phytogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev 59:143-169
  14. Baldi F, Marchetto D, Pini F, Fani R, Michaud L, GiudiceAL, Berto D, Giani M (2010) Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Cont Shelf Res 30:1614-1625 https://doi.org/10.1016/j.csr.2010.06.009
  15. Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-sea Res II 49:237-251
  16. Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity-An Overview. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. John Wiley & Sons, New York, pp 1-34
  17. Bird DF, Juniper SK, Ricciardi-Rigault M, Nartineu P, Prairie YT, Calvert SE (2001) Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S. Mar Geol 174:227-239 https://doi.org/10.1016/S0025-3227(00)00152-3
  18. Boetius A, Lochte K (2000) Regional variation of total microbial biomass in sediments of the deep Arabian Sea. Deep-sea Res II 47:149-168 https://doi.org/10.1016/S0967-0645(99)00096-X
  19. Caron DA, Dam HG, Kremer P, Lessad EJ, Madin LP,Malone TC, Napp JM, Pele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res II 42:943-972 https://doi.org/10.1016/0967-0637(95)00027-4
  20. Choi JW (1996) Macrozoobenthic community in the deep sea soft-bottom of the KODOS 96-1 area, northeastern Pacific Ocean. J Korean Soc Oceanogr 1:73-79
  21. Christian RR, Bancroft K, Wiebe WJ (1975) Distribution of microbial adenosine triphosphate in salt marsh sediments at Sapelo Island, Georgia. Soil Sci 119:89-97 https://doi.org/10.1097/00010694-197501000-00013
  22. Danovaro R, Corinaldesi C, Luna GM, Magagnini M, Manini E, Pusceddu A (2009) Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep-sea Res II 56:738-747 https://doi.org/10.1016/j.dsr2.2008.10.011
  23. Deming JW, Yager PL (1992) Natural bacterial assemblages in deep-sea sediments: towards a global view. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle, Kluwer Academic Publishers Co., Norwell, pp 11-27
  24. Deming JW, Carpenter SD (2008) Factors influencing benthic bacterial abundance, biomass, and activity on the northern continental margin and deep basin of the Gulf of Mexico. Deep-sea Res II 55:2597-2606 https://doi.org/10.1016/j.dsr2.2008.07.009
  25. Dobbs FC, Findlay RH (1993) Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 347-358
  26. Eardly DF, Carton MW, Gallagher JM, Patching JW (2001) Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic. Prog Oceanogr 50:245-259 https://doi.org/10.1016/S0079-6611(01)00056-8
  27. Epstein SS, Rossel J (1995) Enumeration of sandy sediments bacteria: search for optimal protocol. Mar Ecol Prog Ser 117:289-298 https://doi.org/10.3354/meps117289
  28. Ernst W, Goerke H (1974) Adenosine-5'-triphosphat (ATP) in sedimenten und nematoden der nordostatlantischen Tiefsee. “Metor” Forschungsergeb. Reihe C 18:35-42
  29. Fabiano M, Danovaro R (1998) Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antrartica). Appl Environ Microbiol 64:3838-3845
  30. Ferguson RL, Murdoch MB (1975) Microbial ATP and organic carbon in sediments of the Newport River estuary. North Calolina. Estuar Res 1:229-250
  31. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352-3358
  32. Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in bathyal north-eastern Atlantic. J Mar Biol Soc UK 76(2):297-310 https://doi.org/10.1017/S0025315400030563
  33. Hammond DE, McManus J, Berelson WM, Kilgore TE, Pope RH (1996) Early diagenesis of material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-sea Res II 43:1365-1412 https://doi.org/10.1016/0967-0645(96)00027-6
  34. Haberstroh PR, Karl DM (1989) Dissolved free amino acids in hydrothermal vent habitats of the Guaymas Basin. Geochim Cosmochim Acta 53:2937-2945 https://doi.org/10.1016/0016-7037(89)90170-1
  35. Harada K, Shibamoto Y, Kokubun H (1995) Chemical and radiochemical studies of sediment samples from the JET site. In: Yamazaki T, Aso K, Okano Y, Tsurusaki K (eds) Proceedings of the ISOPE-ocean mining symposium. ISOPE, Tsukuba, Japan, 21-22 November 1995 pp 187-192
  36. Hill JK, Wheeler PA (2002) Organic carbon and nitrogen in the northern California current system: comparision of offshore, river plume, and coastally upwelled water. Prog Oceanogr 53:269-387
  37. Hodson RE, Azam F (1977) Determination and biological significance of dissolved ATP in sea water. In: Borun GA (ed) Second bi-annual ATP methodology symposium, SAI Technology Co, San Diego, Calif. pp 127-140
  38. Hodson RE, Maccubin AE, Pomeroy LR (1981) Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar Biol 64:43-51 https://doi.org/10.1007/BF00394079
  39. Honjo S (1980) Material fluxes and modes of sedimenatation in the mesopelagic and bathypelagic zones. J Mar Res 38:53-97
  40. Honjo S, Dymond J, Collier R, Manganini SJ (1995) Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deepsea Res II 42:831-870 https://doi.org/10.1016/0967-0645(95)00034-N
  41. Horn DR, Horn BM, Delach MN (1973) Copper and Nikel content of ocean ferromanganese deposits and their relation to properties of the substrate. In: Morgenstein M (ed) The origin and distribution of manganese nodules in the pacific and prospects for exploration, Hawaii Inst. Geophysics, Honolulu, pp 77-83
  42. Hulett HR (1970) Non-enzymatic hydrolysis of adenosine phosphates. Nature 225:1248-1249 https://doi.org/10.1038/2251248a0
  43. Hyun JH, Choi JK, Yang EJ, Kim KH (1998) Biomass and productivity of bacterioplankton related to surface water divergence in the northeast equatorial Pacific Ocean. J Microbiol 36(3):151-158
  44. Hyun JH, Yang EJ (2005) Meso-scale spatial variation in bacterial abundance and production associated with surface convergence and divergence in the NE equatorial Pacific. Aquat Microbiol Ecol 41:1-13 https://doi.org/10.3354/ame041001
  45. Kaneko T, Ogawa K, Fukushima T (1995) Preliminary results of Meiofauna and bacteria abundance in an environmental impact experiment. In: Yamazaki T, Aso K, Okano Y, Tsurusaki K (eds) Proceedings of the ISOPE-ocean mining symposium, Tsukuba, Japan, 21-22 Nov 1995, pp 181-186
  46. Karl DM, LaRock PA, Morse JW, Sturges W (1976) Adenosine triphosphate in North Atlantic Ocean and its relationship to the oxygen minimum. Deep-sea Res I 23:81-88
  47. Karl DM (1978) Distribution, abundance, and metabolic states of microorganisms in the water column and sediments of the Black Sea. Limnol Oceanogr 23:936-949 https://doi.org/10.4319/lo.1978.23.5.0936
  48. Karl DM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev 44:739-796
  49. Karl DM (1986) Determination of in situ microbial biomass, viability, metabolism, and growth. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature, Plenum Press Co, pp 85-176
  50. Karl DM (1993) Total microbial biomass estimation derived from the measurement of particulate adenosine-5'- triphosphate. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology, Lewis Publishers, pp 359-368
  51. Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents, CRC Press, pp 36-110
  52. Kessler WS (2006) The circulation of the eastern tropical Pacific : a review. Prog Oceanogr 69:181-217 https://doi.org/10.1016/j.pocean.2006.03.009
  53. Kim HJ, Hyeong KS, Yoo CM, Chi SB, Khim BK, Kim DS (2010) Seasonal variations of particle fluxes in the northeastern equatorial Pacific during normal and weak El Nino periods. Geosci J 14(4):415-422 https://doi.org/10.1007/s12303-010-0035-z
  54. Kim KH (2009) Biogeochemical and microbiological response associated with the global climatic disturbance in the northeast equatorial Pacific. Ph.D. Thesis, Inha University, 158 p
  55. Kim KH, Hyun JH, Son SK, Son JW (2008) Distribution patterns of carbon and nitrogen contents in the sediments of the northeast equatorial Pacific Ocean. J Korean Soc Oceanogr 13:210-221
  56. Koster M, Meyer-Reil LA (2001) Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 214:25-41 https://doi.org/10.3354/meps214025
  57. Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27-38 https://doi.org/10.1016/S0399-1784(02)01227-6
  58. Ministry of Maritime Affairs and Fisheries (1998) A report on '98 Deep Sea Bed Mineral Resources Exploration. MOMAF, 1209 p
  59. Montagona PA (1984) In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar Ecol Prog Ser 18:119-130 https://doi.org/10.3354/meps018119
  60. Muller PJ, Hartmann M, Suess E (1988) Environment of manganese nodule. In: Halbach P, Friedrich G, von Stackelberg U (eds) The manganese nodule belt of the Pacific Ocean, Ferdinand Enke Verlag, Stuttgart, pp 70-141
  61. Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, vanBeusekom JEE, de Beer D, Dubilier N, Amann R(2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29:333-348 https://doi.org/10.1016/j.syapm.2005.12.006
  62. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, 173 p
  63. Piper DZ, Rude PD, Monteith S (1987) The chemistry and mineralogy of holed burrows in pelagic sediment at DOMES site A: the equatorial north Pacific. Mar Geol 74:41-55 https://doi.org/10.1016/0025-3227(87)90004-1
  64. Poremba K (1994) Simulated degradation of phytodetritus in deepsea sediments of the NE Atlantic. Mar Ecol Prog Ser 105:291-299 https://doi.org/10.3354/meps105291
  65. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  66. Queric NV, Soltwedel T, Arntz WE (2004) Application of a rapid direct viable count method to deep-sea sediment bacteria. J Microbiol Meth 57:351-367 https://doi.org/10.1016/j.mimet.2004.02.005
  67. Raghukumar C, Laka Bharathi PA, Ansari ZA, Shanta Nair,Ingole B, Sheelu G, Mohandass C, Nagender Nath B,Nimi Rodrigues (2001) Bacterial standing stock, meiofauna and sediment-nutrient characteristics: indicators of benthic disturbance in the central Indian Basin. Deep-sea Res II 48:3381-3399 https://doi.org/10.1016/S0967-0645(01)00047-9
  68. Raghukumar C, Nagender Nath B, Sharma R, Bharathi PAL,Dalal SG (2006) Long-term changes in microbial and biochemical parameters in the Central Indian Basin. Deep-sea Res I 53:1695-1717 https://doi.org/10.1016/j.dsr.2006.08.003
  69. Rijken M (1979) Food and food uptake in Arenicola marina. Neth J Sea Res 13:406-421 https://doi.org/10.1016/0077-7579(79)90014-0
  70. Rowe G, Sibuet M, Deming J, Khripounoff A, Tietjen J, Macko S, Theroux R (1991) ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar Ecol Prog Ser 79:99-114 https://doi.org/10.3354/meps079099
  71. Schriever G, Ahnert A, Bluhm H, Borowski C, Thiel H(1997) Results of the large scale deep-sea environmental impact study DISCOL during eight years of investigation. In: Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, USA, 25-30 May 1997, pp 438-444
  72. Smith CR, Hoover DJ, Doan SE, Pope RH, DeMaster DJ, Dobbs FC, Altabet MA (1996) Phytodetritus at the abyssal sea floor across $10^{\circ}$ of latitude in central equatorial Pacific. Deep-sea Res II 43:1309-1338 https://doi.org/10.1016/0967-0645(96)00015-X
  73. Smith CR, Berelson W, DeMaster DJ, Dobbs FC, HammondD, Hoover DJ, Pope RH, Stephens M (1997) Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-sea Res II 44:2295-2317 https://doi.org/10.1016/S0967-0645(97)00022-2
  74. Smith KL Jr, Kaufmann RS, Balawin RJ, Carlucci AF (2001) Pelagic benthic coupling in the abyssal eastern North Pacific: an 8-year time-series study of food supply and demand. Limnol Oceanogr 46:543-556 https://doi.org/10.4319/lo.2001.46.3.0543
  75. Suess E (1980) Particulate of organic carbon flux in the ocean: surface productivity and oxygen utilization. Nature 288:260-263 https://doi.org/10.1038/288260a0
  76. Tietjen JH (1992) Abundance and biomass of metazoan meiobenthos in the deep sea. In: Rowe GT, Pariente V (eds) Deep-sea food chains and global carbon cycles, Kluwer Academic Publishers Co, pp 45-62
  77. Trueblood DD, Ozturgut E (1997) The benthic impact experiment: a study of the ecological impacts of deep seabed mining on abyssal benthic communities. In: Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, USA, 25-30 May, pp 481-487
  78. Turley CM, Dixon JL (2002) Bacterial numbers and growth in surfacial deep-sea sediments and phytodetritus in NE Atlantic: relationships with particulate organic carbon and total nitrogen. Deep-Sea Res I 49:815-826 https://doi.org/10.1016/S0967-0637(01)00080-2
  79. Vanucci S, Dell'Anno A, Pusceddu A, Fabiano M, Lampitt RS, Danovaro R (2001) Microbial assemblages associated with sinking particles in the Porcupine Abyssal Plain (NE Atlantic Ocean). Prog Oceanogr 50:105-121 https://doi.org/10.1016/S0079-6611(01)00050-7
  80. Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba Na-1500 Analzer. Deep-Sea Res II 37:157-165 https://doi.org/10.1016/0198-0149(90)90034-S
  81. Yang EJ, Choi JK, Hyun JH (2004) Distribution and structure of heterotrophic protest communities in the northeast equatorial Pacific Ocean. Mar Biol 146:1-15 https://doi.org/10.1007/s00227-004-1412-9
  82. Yang YL, Elderfield H, Ivanovich M (1990) Glacial to Holocene changes in caronate and clay sedimentation in the equatorial Pacific ocean estimated from thorium-230 profiles. Paleoceanography 5:789-809 https://doi.org/10.1029/PA005i005p00789