DOI QR코드

DOI QR Code

Characteristics of Summer Rainfall over East Asia as Observed by TRMM PR

TRMM 위성의 강수레이더에서 관측된 동아시아 여름 강수의 특성

  • Seo, Eun-Kyoung (Department of Earth Science Education, Kongju National University)
  • 서은경 (공주대학교 사범대학 지구과학교육과)
  • Received : 2010.12.05
  • Accepted : 2011.01.21
  • Published : 2011.02.28

Abstract

The characteristics and vertical structure of the rainfall are examined in terms of rain types using TRMM (Tropical Rainfall Measuring Mission) PR (Precipitation Radar) data during the JJA period of 2002-2006 over three different regions; midlatitude region around the Korean Peninsula (EA1), subtropical East Asia (EA2), and tropical East Asia (EA3). The convective rain fraction in the EA1 region is 12.2%, which is smaller by 6% than those in the EA2 and EA3 regions. EA1 shows less frequent convective rain events, which are about 0.5 times as many as those in EA3. EA1 produces the mean convective rain rate of 10.4 mm/h that is about 40% larger than EA2 and EA3 while all regions have similar mean stratiform rain rate. The relationships between storm height and rain rate indicate that the rain rate is proportional to the storm height. Based on the vertical structure of radar reflectivity, EA1 produces deeper and stronger convective clouds with higher rain rate compared to the other regions. In EA3, radar reflectivity increases distinctly toward the land surface at altitude below 5 km, indicating more dominant coalescence-collision processes than the other regions. Furthermore, the bright band of stratiform rain clouds in EA3 is very distinct. In convective rain clouds, the first EOFs of radar reflectivity profiles are similar among the three regions, while the second EOFs are slightly different. The larger variability exists at upper layers for EA1 while it exits at lower levels for EA3.

이 연구는 TRMM(Tropical Rainfall Measuring Mission) 위성의 강수레이더인 PR(Precipitation Radar)의 5년간 (2002-2006) 6-8월 동안의 산출물을 분석하여 한반도 주변 지역과 동아시아의 아열대 및 열대 지역의 강우와 강우구름의 연직 구조 특성을 강우유형별로 분류하여 조사하였다. 한반도 주변 지역은 12.2%의 대류형 강우 비율로 다른 지역과 비교하여 약 6% 작았으며, 단위면적당의 강우 발생 빈도는 특히 열대지역의 50% 정도였다. 또한 한반도 주변 지역은 대류형에서 40% 더 강한 강우강도(10.4 mm/h)를 만들어내며, 층운형의 경우 세 지역 모두 비슷한 강우강도를 나타냈다. 평균적으로 강우강도는 운정고도와 비례하는 관계를 보였다. 레이더 반사도의 연직 구조를 통해 한반도 주변의 대류운은 연직적으로 매우 발달한 구름으로 더 높은 강우강도와 연관되어 있었다. 특히 열대지역의 대류형 강우구름들은 약 5 km의 고도 이하에서 지표에 접근함에 따라 수적들의 충돌병합에 의해 뚜렷한 레이더 반사도의 증가를 보였으며, 층운형 강우구름들은 더욱 뚜렷한 밝은 띠를 갖고 있었다. 한편 대류형에서 레이더 반사도의 첫 번째 경험직교함수 구조는 세 지역이 매우 비슷하지만, 두 번째 경험직교함수는 조금 다른 모습을 보였다. 한반도 주변 지역과 열대지역은 각각 상층과 하층에 큰 변동성을 보였다.

Keywords

References

  1. 김찬수, 서명석, 2008, 우리나라에서 최근(1976-2005)강수의 변화시점. 한국기상학회지, 18, 111-120.
  2. 김형우, 1999, 도플러 레이다 자료를 이용한 집중호우의 중규모대류계 분석. 서울대학교 이학석사학위논문, 101 p.
  3. 김형우, 이동규, 김영철, 2000, 도플러 레이다를 이용한 중규모 대류계의 집중호우 분석. 한국기상학회 2000 가을학술대회 초록논문집, 118-122.
  4. 신임철, 김태룡, 이은정, 김은숙, 김은희, 배선희, 박연옥, 2007, 8월 및 여름철 강수량의 장기변화 경향. 한국기상학회 2007가을 학술대회 초록논문집, 484-485.
  5. 이승호, 권원태, 2004, 한국의 여름철 강수량 변동 -순별 강수량을 중심으로-. 대한지리학회지, 39, 819-985.
  6. 이한아, 염성수, 2010, 구름모형에서의 현실적인 핵화과정 모수화를 위한 에어러솔 분포 적용 실험. 한국기상학회 2010 가을 학술대회 초록논문집, 420-421.
  7. 최영진, 문자연, 2000, 한국의 여름철 일 강우강도 변화 경향. 한국기상학회 2000 가을 학술대회 초록논문집, 339-341.
  8. 허창회, 강인식, 1988, 한국지역 강수의 변동성에 관한 연구. 한국기상학회지, 24, 38-48.
  9. Biggerstaff, M.I. and Houze, R.A.Jr., 1989, Use of dual-Doppler radar analyses in a composite study of a midlatitude squall line observed during PRE-STORM. Preprints, 24th Conference on Radar Meteorology, Tallahassee, American Meteorological Society, 455-458.
  10. Biggerstaff, M.I. and Houze, R.A.Jr., 1991, Kinematic and precipitation structure of the 10-11 June 1985 squall line. Monthly Weather Review, 119, 3034-3065. https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2
  11. Biggerstaff, M.I. and Houze, R.A.Jr., 1993, Kinematics and microphysics of the transition zone of the 10-11 June 1985 squall line. Journal of Atmospheric Sciences, 50, 3091-3110. https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2
  12. Biggerstaff, M.I., Seo, E.K., Hristova-Veleva, S., and Kim,K.-Y., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part I: Model comparison using EOF analyses. Journal of Applied Meteorology and Climatology, 47, 930-954.
  13. Biggerstaff, M.I. and Seo, E.K., 2010, An EOF-Based Comparison and evaluation of simulated passive microwave signatures to observations over tropical oceans. Journal of Geophysical Research, 115, doi:10.1029/2009JD013029.
  14. Choi, Y., 2002, Trends in daily precipitation events and their extremes in the southern region of Korea. Korea Society of Environmental Impact Assessment, 11, 189-203.
  15. Cotton, W.R., Lin, M.-S., McAnelly, R.L., and Tremback,C.J., 1989, A composite model of mesoscale convective complexes. Monthly Weather Review, 117, 765-783. https://doi.org/10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2
  16. Emanuel, K.A., Neelin, J.D., and Bretherton, C.S., 1994, On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143. https://doi.org/10.1002/qj.49712051902
  17. Houze, R.A.Jr., 1981, Structures of atmospheric precipitation Systems: A global survey. Radio Science, 16, 671-689. https://doi.org/10.1029/RS016i005p00671
  18. Houze, R.A.Jr., 1997, Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of American Meteorological Society, 78, 2179-2196. https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
  19. Houze, R.A.Jr., 2004, Mesoscale convective systems. Reviews of Geophysics, 42, RG4003, 2004RG000150. https://doi.org/10.1029/2004RG000150
  20. Hu, Z., 1995, The role of raindrop coalescence and breakup in rainfall modeling. Atmospheric Research, 37, 343-359. https://doi.org/10.1016/0169-8095(95)96843-B
  21. Iguchi, T. and Meneghini, R., 1994, Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne of spaceborne radar data. Journal of Atmospheric and Oceanic Technology, 11, 1507-1516. https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2
  22. Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K., 2000, Rain-profiling algorithm for the TRMM Precipitation Radar. Journal of Applied Meteorology, 39, 2038-2052. https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2
  23. Johnson, R.H., Rickenbach, T., Rutledge, S.A., Ciesielski, P., and Schubert, W., 1999, Trimodal characteristics of tropical convection. Journal of Climate, 12, 2397-2418. https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
  24. Kingsmill, D.E. and Houze, R.A.Jr., 1999, Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 125, 1209-1229. https://doi.org/10.1256/smsqj.55605
  25. Kummerow, C.D., Barnes, W., Kozo, T., Shiute, J., and Simpson, J., 1998, The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809-817. https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
  26. Kummerow, C.D., Hong, Y., Olson, W.S., Yang, S., Adler,R.F., McCollum, J., Ferraro, R., Petty, G., Shin, D.B.,and Wilheit, T.T., 2001, The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology, 40, 1801-1820. https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
  27. LeMone, M.A. and Zipser, E.J., 1980, Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. Journal of Atmospheric Sciences, 37, 2444-2457. https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2
  28. Lee, D.-K., Kim, H.-R., and Hong, S.-Y., 1998, Heavy rainfall over Korea during 1980-1990. Journal of Atmospheric Sciences, 1, 32-50.
  29. Maddox, R.A., Rodgers, D.M., and Howard, K.M., 1982, Mesoscale convective complexes over the United States in 1981: Annual summary. Monthly Weather Review, 110, 1501-1514. https://doi.org/10.1175/1520-0493(1982)110<1501:MCCOTU>2.0.CO;2
  30. May, P.T. and Rajopadhyaya, D.K., 1999, Vertical velocity characteristics of deep convection over Darwin, Australia. Monthly Weather Review, 127, 1056-1071. https://doi.org/10.1175/1520-0493(1999)127<1056:VVCODC>2.0.CO;2
  31. Olson, W.S., Kummerow, C.D., Yang, S., Petty, G.W., Tao,W.K., Bell, T.L., Braun, S.A., Wang, Y., Lang, S.E.,Johnson, D.E., and Chiu, C., 2006, Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Method and uncertainties. Journal of Applied Meteorology and Climatology, 45, 702-720. https://doi.org/10.1175/JAM2369.1
  32. Seo, E.K. and Biggerstaff, M.I., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part II: Uncertainty in rain, hydrometeor structure and latent heating retrievals. Journal of Applied Meteorology and Climatology, 47, 955-972.
  33. Seo, E.K., Liu, G., Suh, M.-S., and Sohn, B.J., 2010, The varying response of microwave signatures to different types of overland rainfall found over the Korean peninsula. Journal of Atmospheric and Oceanic Technology, 27, 785-792. https://doi.org/10.1175/2009JTECHA1364.1
  34. Shea, D., Trenberth, K., and Reynolds, R., 1990, A global monthly sea surface temperature climatology. NCAR technical note (NCAR/TN-345+STR), Boulder, Colorado, USA, 167 p.
  35. Simpson, J., Alder, R.F., and North, G.R., 1988, A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bulletin of American Meteorological Society, 69, 278-295. https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
  36. Srivastava, R.C., 1967, On the role of coalescence between raindrops in shaping their size distribution. Journal of Atmospheric Sciences, 24, 287-291. https://doi.org/10.1175/1520-0469(1967)024<0287:OTROCB>2.0.CO;2
  37. Srivastava, R.C., 1971, Size distribution of raindrops generated by their breakup and coalescence. Journal of Atmospheric Sciences, 28, 410-415. https://doi.org/10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2
  38. Stout, J. and Kwiatkowski, J., 2004, Selected analyses of TRMM instantaneous rainfall data. 2004 Geoscience and Remote Sensing Symposium Proceedings, 914-917.
  39. Thurai, M., Deguchi, E., Iguchi, T., and Okamoto, K.,2003, Freezing height distribution in the tropics. International Journal of Satellite Communications and Networking, 21, 533-545. https://doi.org/10.1002/sat.768
  40. Xu, K.-M. and Randall, D.A., 1999, Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. Journal of the Atmospheric Sciences, 58, 1630-1649.
  41. Yunfei, F., Yihua, L., Liu, G., and Qiang, W., 2003, Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Advances in Atmospheric Sciences, 20, 511-529. https://doi.org/10.1007/BF02915495
  42. Yuter, S.E. and Houze, R.A.Jr., 1995, Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Monthly Weather Review, 123, 1964-1983. https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2
  43. Yuter, S.E., Miller, M., Stout, J., Wood, R., Kwiatkowski, J., Horn, D., and Spooner, C., 2006, Remaining challenges in satellite precipitation estimation for the Tropical Rainfall Measuring Mission. 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain.
  44. Zipser, E.J. and LeMone, M.A., 1980, Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. Journal of Atmospheric Sciences, 37, 2458-2469. https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2
  45. Zipser, E.J., 1982, Use of a conceptual model of the life cycle of mesoscale convective systems to improve veryshort- range forecasts. In Browning, K. (ed.), Nowcasting, Academic Press, USA, 191-204.

Cited by

  1. Rainfall Characteristics in the Tropical Oceans: Observations using TRMM TMI and PR vol.33, pp.2, 2012, https://doi.org/10.5467/JKESS.2012.33.2.113
  2. Estimates of Aerosol Indirect Effect from Terra MODIS over Republic of Korea vol.2013, pp.1687-9317, 2013, https://doi.org/10.1155/2013/976813
  3. Long-Term Comparison of Collocated Instantaneous Rain Retrievals from the TRMM Microwave Imager and Precipitation Radar over the Ocean vol.54, pp.4, 2015, https://doi.org/10.1175/JAMC-D-14-0235.1
  4. Optimization of Cloud-Radiation Databases for Passive Microwave Precipitation Retrievals over Ocean vol.33, pp.8, 2016, https://doi.org/10.1175/JTECH-D-15-0198.1
  5. Precipitating Cloud Characteristics during Changma as Seen in TRMM PR Observations vol.2017, pp.1687-9317, 2017, https://doi.org/10.1155/2017/8598594
  6. Accuracy Assessment of the Satellite-based IMERG’s Monthly Rainfall Data in the Inland Region of Korea vol.39, pp.6, 2018, https://doi.org/10.5467/JKESS.2018.39.6.533