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Abstract：The goal of solving a contiguous land acquisition problem is to find an optimal cluster of land parcels so

that one can move from an acquired parcel to another without leaving the cluster. In many urban and regional

planning applications, criteria such as acquisition cost and compactness of acquired parcels are important. Recent

research has demonstrated that spatial contiguity can be formulated in a mixed integer programming framework. Spatial

compactness, however, is typically formulated in an approximate manner using parameters such as external border

length or other shape indices of acquired land parcels. This paper first develops an alternative measure of spatial

compactness utilizing the characteristics of the internal structure of a contiguous set of land parcels and then

incorporates this new measure into a mixed integer program of contiguous land acquisition problems. A set of

computational experiments are designed to demonstrate the use of our model in a land acquisition context.
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요약：토지획득문제(land acquisition problems)란일련의목적에맞게서로인접하고있는최적의토지필지들을찾는것이다. 이

문제는 도시 및 지역 계획과 각종 구획 문제 등에서 사회적 활용도가 높은 분야로서, 공간적 요소인 인접성(contiguity)와 집도

(compactness)는중요한제약요소로다루어지고있다. 그렇지만, 공간적 집도(spatial compactness)는완벽한측정방법이존재하

지않고, 획득된필지들의둘레를제거나, 모양을측정하는등의여러가지방법으로측정되고있다. 그리하여이논문에서는공간적

집도를측정하는새로운방법을제시하고자한다. 인접한토지필지간의내부적인구조적특징을바탕으로 proximity degree라고

불리는공간적 집도를측정하는최적화연구모델(optimization model)을발전시켰다. 일련의실험을통해 proximity degree에따

라다양한공간적 집도를가진모습을확인할수있다.

주요어 : 공간적 집도, 토지획득문제, 최적화연구모델
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1. Introduction

Land acquisition models have been used in a

variety of application domains, including nature

reserve design (Williams and ReVelle 1996;

McDonnell et al. 2002; Nalle et al. 2002; Fisher

and Church 2003), residential development

(Baerwald 1981; Cocks and Baird 1989; Diamond

and Wright 1989), recreational facility location

(ReVelle and Swain 1970; Hopkins 1977; Wright

et al. 1983; Gilbert et al. 1985), and landfill siting

(Minor and Jacobs 1994). Though a common



objective is to minimize acquisition cost, to

effectively solve a land acquisition problem,

many additional criteria must also be considered.

These criteria include spatial contiguity,

compactness, and other environmental and

economic factors. Among these criteria, spatial

contiguity and compactness are often critical

when acquired land parcels are required to be

adjacent and close to each other. 

A cluster of acquired land parcels is contiguous

if one can move from an acquired parcel to

another without leaving the cluster. Recent

research has demonstrated that spatial contiguity

can be formulated in a mixed integer

programming framework. Cova and Church

(2000), for example, developed a set of contiguity

constraints based on finding the shortest path

between a land parcel to a pre-selected root

parcel (Cova and Church 2000). Williams (2002)

developed a contiguity model using the concept

of a minimum spanning tree on a planar graph.

More recently, Shirabe (2005) presented an

alternative contiguity model based on network

flows. Shirabe (2009) and Duque et al. (2011)

developed exact optimization models for

districting problems considering contiguity

constraints. 

Compactness, however, does not have a

perfect measure and is often more difficult to

measure and formulate, mainly because of the

lack of an objective definition (Wright et al. 1983;

Young 1988; Altman 1998). In a common sense,

compactness means the closeness or proximity of

the acquired land parcels to each other (Aerts et

al. 2003). It is generally accepted that a region is

compact if it exhibits a circular or square shape.

In the context of land acquisition problems,

Wright et al. (1983) developed a compactness

measure based on the length of the external

border that separates acquired and non-acquired

parcels. Based on this measure, a given area is

maximally compact if the border that encloses the

acquired area is a circle; the border of a non-

circular shape has a total length that is greater

than its circular counterpart. A compact set of

acquired land parcels can therefore be obtained

by minimizing the length of external borders. To

account for variation in land parcel size,

especially for cases when irregular land parcels

are used, Minor and Jacobs (1994) and Diamond

and Wright (1989) used the ratio between the

external perimeter and the total area of the

acquired parcels. These measures, though

effective, may not distinguish a variety of parcel

collections that exhibit the same external border

length or perimeter-area ratio but have different
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Figure 1. Two sets of example acquired land parcels 

The parcels filled with patterns represent the buffer zones and the grey parcels enclosed by the buffer parcels consist of the core
area. Both examples have the same size of all acquired land parcels (42) and the same length of external border (34).



shapes and compactness (Young 1988; Altman

1998). 

A second type of compactness measure can be

used to address some of the limitations discussed

above by delineating acquired parcels into core

and buffer zones (Williams and ReVelle 1996;

Aerts et al. 2003). A compact set of parcels can be

obtained by maximizing the core area. Spatial

compactness is promoted when required

surrounding buffer zones are minimally

generated. A drawback of this approach,

however, is that acquired parcels with a larger

core area may not necessarily be more compact

than parcels with the same area size but a smaller

core (Figure 1). 

The purpose of this paper is to develop a new

compactness measure (called proximity degree)

that can be used to account for the internal

structure of a contiguous set of land parcels

based on a spanning tree. The new compactness

measure is basically based on the common sense

definition regarding compactness, which is

proximity or closeness of the acquired land

parcels and will be incorporated into the exact

optimization model. In Section 2, we introduce

the definition of the new measure and then

formulate it in an integer programming

framework for contiguous land acquisition

problems. In Section 3, a set of computational

experiments are designed to demonstrate the use

of our compactness measure in a land acquisition

context. Finally, in Section 4, we conclude the

paper by discussing the applications and

limitations of the measure.

2. Methodology and Problem

Formulation

A graph consists of two components: vertices

that represent objects (e.g. locations or land

parcels) and edges that represent relationships or

connections among vertices. Formally, a graph is

a pair G=(V, E) where V is a set of all vertices

and E is a set of all edges. A planar graph is

constructed in the Cartesian plane or on the

surface of a sphere in a way such that no two

edges intersect, except at vertices. Figure 2a

illustrates the representation of land parcels using

a graph. Note that the use of graph should not be

confined by the regularity of the parcels, though

a set of regular land parcels are used here for the

sake of illustration.

A tree is a connected graph with a simple path

and is acyclic. A spanning tree of a graph is a tree

that connects all the n vertices of the graph with

n-1 edges (Figure 2b) (Evans and Minieka 1992,

9). A subtree of a spanning tree consists of p

vertices (p≤n) which are a subset of the vertices

in the spanning tree with p-1 edges and p

contiguous land parcels represented by the

vertices on a subtree from a contiguous set (see

Figures 2c and d). Williams (2002) utilized this

feature to develop a contiguity model for land

acquisition problems (see below in section called

contiguity model). 

Given a subtree, we define its corresponding

subgraph of G as G'=(V', E'), where V' is a set that

contains vertices of the subtree, and E' is a subset

of E containing all edges amongst vertices in V'.

For example, p (p≤n) vertices and their

connections among p vertices can be formed in

the subgraph G'. The number of edges in G' may

be greater than the number of edges used to

construct the subtree (see Figures 2d). More

importantly, the difference between these two

numbers (the number of edges in the subgraph

and that of edges in the subtree) can be used to

indicate the compactness of the vertices in the

subtree. A subtree is least compact if all the edges

in the subgraph are used to construct the subtree

that exhibits a linear feature and the number of

edges of a subtree is same as the number of
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edges of its subgraph (Figure 2c). The shape

becomes compact if the length of edges in the

subgraph but not in the subtree decreases and

the number of edges of a subtree is less than the

number of edges of its subgraph (Figure 2d). In

Figure 2c, the number of vertices in G' is 6, the

number of edges in G' is 5 and the number of

edges in the subtree is also same as 5.The

difference between the number of edges in the

subgraph and the subtree is 0. Figure 2c indicates

the least compact because all the edges in the

subgraph (G') are used to construct the subtree.

However, In Figure 2d, the number of vertices in

G' is 6 and the number of edges in the subtree is

5 but the number of edges in G' is 7. This

difference between the number of edges in the

subgraph and the subtree is 2 which can lead to

measure proximity degree. 

Here, we informally define a new compactness

measure, called the raw proximity degree (c'), as

the difference between the length of edges that

are in the subgraph but not in the subtree and

the length of edges used in the subtree. A high

value can be used to indicate a relatively compact

shape, while a low value reflects a relatively un-

compact shape. It should be noted that in many

cases the length of edges in the subgraph but not

in the subtree is smaller than the length in the

subtree, which yields a negative value (see

Figures 2c and 2d). This is the reason c' is called

raw proximity and we discuss the normalization

of c' in below section “Modeling compactness”

after we introduce the contiguity model

developed by Williams (2002).

1) Contiguity model

A significant feature of a planar graph is that it

has a dual graph, created by placing a new vertex

in each region enclosed by edges of the original

graph and connecting these new vertices by new

edges that cross all original edges (Figure 3a).

The dual graph is also a planar graph and the

dual of a dual graph is always the original graph

(Evans and Minieka 1992, 6). We call the original

graph a primal graph. The edges in the primal

graph are intersecting with the edges in the dual

graph. Note that the spanning trees can be

constructed for both the primal and dual graphs.

The primal and dual spanning trees are

complementary if the edges in the two trees do

not intersect (Figure 3b). 

Williams (2002) developed a contiguity model

by maintaining the complementarity of the primal
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Figure 2. A graph representation of land parcels

(a) Each vertex is used to represent a regular land parcel and the edges (dashed lines) represent the connectivity between

adjacent parcels. (b) A spanning tree where the solid lines represent edges on the spanning tree. (c) A subtree of the spanning

tree and its corresponding subgraph (included in the shaded area). Dark dots represent the vertices in the subtree and dark solid

lines represent the edges on the subtree. The proximity degree of the subtree is 0. (d) Another subtree and corresponding

subgraph of six vertices where the proximity degree is 2, indicating a more compact shape than the subtree in (c).



and dual spanning trees. In this way, cycling can

be prevented and the valid spanning trees can be

subsequently ensured because a cycle in any of

the two trees will violate the complementarity.

For each graph (primal and dual), a vertex can be

arbitrarily selected as a terminal vertex. A total of

n-1 directed arcs are required to build a spanning

tree in the primal graph of n vertices and,

similarly, m-1 direct arcs are needed for the

spanning tree in the dual graph of m vertices. A

subtree that consists of p vertices in the primal

spanning tree represents a contiguous set of p

land parcels. The goal of the program is to search

for the subtree that yields minimal acquisition

cost given such cost for each vertex.

The following indices and parameters are used

in the formulation of this model: 

i, j , I=the indices and set of primal vertices,

where i, j=1, …, n;

k, l, K=the indices and set of dual vertices,

where k, l=1, …, m;

Di=the set of primal vertices that are adjacent to

primal vertex i;

Dk=the set of dual vertices that are adjacent to

dual vertex k; 

Ai=the acquisition cost of primal vertex i; and 

p=the number of land parcels (vertices) to be

selected.

The decision variables are defined below: 
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Figure 3. Primal and dual planar graphs (a), and their complementary spanning trees (b) 

Here, circles represent vertices in the primal graph and vertex 5 is specified as the terminal vertex; squares represent vertices in

the dual graph and vertex A is assigned to be the terminal vertex. Thick lines in (b) represent the arcs used to construct

complementary spanning trees.

1 if direct arc (i, j) in the primal graph

is selected for the spanning tree and

is also selected for the subtreeXij=”
0 otherwise

1 if direct are (i, j) in the primal graph

is selected for the primal spanning

tree but is not selected for subtreeYij=”
0 otherwise

1 if direct arc (i, j) in the dual graph is

selected for the complemenary dual

spanning tree Zkl=”
0 otherwise

1 if a primal vertex i is selected for

acquisition 
Ui=”

0 otherwise



With the above variables defined, the contiguity

model can be presented as: 

Minimize: AiUi (1)

Subject to: Xij+ Yij=1

for all primal vertices i = 1, 2, …, n-1 (2)

Zkl=1

for all dual vertices k=1, …, m-1 (3)

Xij+Yij+Xji+Yji+Zkl+Zlk=1

for all intersecting primal-dual arc pairs (4)

for all primal arcs (i, j), i < j (5)

Xij≤Ui

for all primal vertices i = 1, …, n-1 (6)

Ui=p (7)

Xij=p-I (8)

(9)

Xij, Yij, Zkl, Ui∈{0, 1}

The details of the above model have been

discussed by Williams (2002); here we focus on

the essence of this model. The objective (1) is to

minimize the total acquisition cost. Constraints (2)

through (4) are used to create complementary

primal and dual spanning trees. Constraints (2)

specify that only one vertex is selected from the

primal graph. Constraints (3) indicate that only

one vertex is selected from the dual graph.

Constraints (4) are used to choose only one direct

arc between the primal graph and the dual graph.

Constraints (5) through (8) guarantee the creation

of a connected subtree of p vertices in the primal

spanning tree. Constraints (5) and Constraints (6)

ensure contiguity in selected parcels. Constraints

(7) specify p parcels to be chosen. Constraints (8)

indicate p-1 edges to construct a spanning tree.

Constraints (9) specify the binary decision

variables.

2) Modeling compactness

This now develops a mixed integer program to

model the proximity degree (our compactness

measure) of the vertices in the subtree and first

introduce a new set of decision variables: 

With this definition, this paper further defines a

raw proximity degree which refers to the

closeness between selected vertices. Proximity

degree can be measured by considering the

length (or distance) of edges that are in the

subgraph but not in the subtree. That is, the

shorter the length (or distance) of edges in the

subgraph but not in the subtree, the more

compact shapes. There are three fundamental

conditions of proximity degree. First conditions is

that the subtree with p parcels is a minimum

spanning tree, second condition is that the

number of edges in the subgraph but not in the

subtree is more and more, and third condition is

that the length of edges in the subgraph but not

in the subtree is shorter and shorter. A raw

proximity degree (c') is also mathematically

explained as c'= - dijXij, where dij is

the distance between vertices i and j. The use of

dij is necessary for irregular graphs since edges

may different lengths. Lastly, this paper defines

∑
i

∑
j∈Di

Wij
dij

∑
j∈Di

∑
i

∑
j∈Di

∑
i∈I

∑
i∈I

∑
j∈Di

∑
j∈Dk

∑
j∈Di

∑
j∈Di

∑
i∈I
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1 if edge between vertices i and j in

the primal graph is in the subgraph

but not in the subtree 
Wij=”

0 otherwise

” Xij+Xji≤Ui

Xij+Xij≤Ui



proximity degree (c) as a normalized measure

that is intuitive to use in practice: 

c= (10)

where cmin and cmax are the lower and upper

bounds of the c' measure, respectively. These

bounds are constants and the value of c ranges

from 0 (least compact) to 1 (most compact).

These proximity degree measures successfully not

only investigate internal structure among selected

parcels, but also give normalized index from 0

(least compact) to 1(most compact).

The idea of proximity degree, the closeness

between selected vertices, is totally different from

the original model of Williams (2002). Williams

(2002) finds p contiguous parcels with the

minimum land costs by finding a spanning tree

and p subtrees in the spanning tree. The model

of Williams (2002) currently does not find MST

(minimum spanning tree) which does not

consider the length of edges, but only find a

spanning tree. The model of Williams (2002)

finds p contiguous parcels with minimum land

costs without consideration of the length of

edges. There are several possible solutions when

p=3 with minimization of land acquisition cost

(Figure 4). However, a new compactness model

wants to find a compact shape in p contiguous

parcels by considering the length (or distance) of

edges called proximity degree which refers to the

closeness between vertices. Then, Figure 4a

shows high proximity degree because length of

arcs (or edges) in not in the subgraph only in the

subtree is short as 1 while Figure 4b shows low

proximity degree because it is very long as 10.

The consideration of arc lengths (or edge lengths)

can be useful to measure the closeness between

selected vertices. 

Based on the above definitions, we formulate

the following constraints:

c≥c0 (11)

Ui+Uj-(Xij+Xji)-1≤Wij+Wji

for all primal arcs (i, j), i<j (12)

(Ui+Uj)-(Xij+Xji)≤Wij+Wji

for all primal arcs (i, j), i<j (13)

Wij ∈{0, 1} (14)

Constraint (11) specifies that the compactness

of the shape must be greater than or equals to a

user-specified value c0 (0≤c0≤1). Constraints (12)

and (13) control all four possible cases of the

relationship between vertices and direct arcs that

are needed to compute compactness. The first

case occurs when two adjacent vertices (i and j)

are selected, direct arc (i, j) or (j, i) is in the

subtree and there is no edges in the subgrah but

1
2

c'-cmin

cmax-cmin
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Figure 4. Graphical illustrations of the model of Williams (2002) 

when p = 3. Circles represent vertices in the primal graph, costs in circles are land acquisition cost, and each arc has its length.



not in the subtree. In the first case, we have

Ui+Uj=2, Xij+Xji=1, and Wij+Wji=0. The second

case is when two adjacent vertices (i and j) are

selected, and arc (i, j) or (j, i) is only in the

subgraph but not in the subtree. In the second

case, we have Ui+Uj=2, Xij+Xji=0, and Wij+Wji=1.

The third case takes place when only one vertex

of i and j is selected. The third case clearly leads

to the fact that there is no directed arc (i, j) or (j,

i) in the subtree and there is no edges in the

subgrah but not in the subtree. In the third case,

we have Ui+Uj=1, Xij+Xji=0, and Wij+Wji=0. The

last case represents the situation when i and j are

not selected, and we have Ui+Uj=0, Xij+Xij=0, and

Wij+Wji=0. Note that Wij+Wji is always 0 when

one of the directed arcs between two adjacent

vertices is included in the subtree (Xij+Xji=1).

Constraints (12) stipulate that all the above four

possible cases are controlled. However, constraint

(12) may produce the only one exception case,

that is when there exists a directed arc between

vertices i and j in the subgraph but not in the

subtree even though verteices i and j are not

selected (i.e., Ui+Uj=0, Xij+Xji=0 and Wij+Wji=1).

Constraints (13) successfully prevent the

possibility, the one exception case. Constraints

(14) require Wij to be a non-negative binary

decision variable. 

In summary, the mixed integer program to

model the compactness for a contiguous land

acquisition problem can be formulated as follows:

Model 1

Minimize: AiUi

Subject to: Equations (2) to (9), and (11) to

(14).

Solving Model 1 requires the knowledge about

cmin and cmax as specified in Equation (11). For a

regular graph based on a grid of cells (see, for

example, Figure 2a), we can analytically derive

the upper bound of its proximity degree given

the value of p (see Appendix). The lower bound

occurs when all vertices in the subgraph are

adjacent to each other as in a line (see Figure 2c)

and therefore cmin is always -(p-1). For an

irregular graph, however, the lower and upper

bounds of the proximity degree may not be

analytically derived because of the irregularity of

the graph. In this case, the upper bound can be

obtained by solving the following problem:

Model 2

Maximize: - dijXij

Subject to: Equations (2) to (9), and (12) to

(14).

Similarly, the lower bound can be obtained by

solving the following problem:

Model 3

Minimize: - dijXij

Subject to: Equations (2) to (9), and (12) to

(14).

3. Computational Experiments

A set of experiments are designed to

demonstrate the use of a compactness measure

for land acquisition problems. This model

incorporates the compactness constraints

described above into the contiguity model

developed by Williams (2002) and then

investigates the model performance with different

proximity degrees. 

The experiments were conducted on a Xeon

∑
j∈Di

∑
i

Wij
dij

∑
j∈Di

∑
i

∑
j∈Di

∑
i

Wij
dij

∑
j∈Di

∑
i

∑
i∈I
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2.8 GHz computer with 8 GB memory. A solver

called CPLEX (version 11) is used to solve the

problem. There are two types of test data used to

demonstrate the model. The first type of test data

is a regular data. The surface of acquisition costs

developed by Williams (2002) is used here in

order to see the difference between models. On

this surface, acquisition costs are created on a

grid with 10 rows and 10 columns. The cost at

each cell (Ai) is a random number taken from a

uniform distribution with a range of [0.2, 1.8],

with a step size of 0.1. In order to demonstrate

the impact of our compactness model on the

results of land acquisition, the p value is decided

to set to 30, which presented a significant

computational challenge in the previous work by

Williams (2002). This p value is sufficient to

demonstrate the use of my new compactness.

The second type of test data is an irregular data,

Iowa 99 counties. The acquisition cost for each

county is the population in 2000 for each county

and p value is decided to set to 30. 

For computational experiments using regular

data, the lower bound of proximity degree for the

case of p=30 is -29. Using the analytical

procedure provided in the Appendix, the upper

bound of proximity degree (cmax) is -9 for the

case of p=30. I set c0 to a value between 0 and 1,

with an increment of 0.05. Table 1 reports the

proximity degree requirement (c0), the actual

proximity degree of the result (c), the raw

proximity degree (c') of the result, the objective

function value, the number of iterations, the

number of branch-and-bound nodes, and the

computing time (in seconds) for each c0 value.

Model 2 and 3 are also solved in order to

examine the computational complexity of these

two models. The spatial configurations of the

results are illustrated in Figure 5 and the

computational results are listed in the bottom two

rows of Table 1. The results also show that Model

2 and 3 can be solved efficiently, which implies

that it is feasible to obtain the lower and upper

bounds of proximity degree. Figure 6 shows the

experiment solutions with different proximity

degree requirements. The objective function

value increases from 13.90 to 23.10 when c0

increases from 0 to 1. The table also includes the

performance of the original model by Williams

(2002).

It can be concluded that owing to the addition

of compactness constraints (11) to (14), the

model show different computing time depending

on c0 specified by the user. In general, the model

can be efficiently solved (in less than a minute)

for most of the cases. The highest computation

challenge occurs when c0 is set to 0.5, which

refers to something in-between in terms of

proximity degree. It can be noted that the

identical solutions are returned when c0 is set
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Figure 5. Spatial configurations of results from Model 2 (a) and Model 3 (b)
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Table 1. Results for computational experiments (p=30)

c0 c c' Objective Iteration Node Time (s)

1.00 1.00 -9 23.10 65039 375 16.94

0.95 0.95 -10 20.60 9630 46 3.97

0.90 0.90 -11 19.90 5297 16 2.15

0.85 0.85 -12 19.60 37613 565 18.21

0.80 0.80 -13 19.20 89843 1307 32.05

0.75 0.75 -14 18.80 81368 1099 27.94

0.70 0.70 -15 18.10 29166 411 9.99

0.65 0.65 -16 17.70 217030 3979 61.29

0.60 0.60 -17 17.30 363619 7050 99.13

0.55 0.55 -18 16.80 395579 7021 101.71

0.50 0.50 -19 16.30 2924969 61298 660.01

0.45 0.45 -20 15.80 1113029 26761 241.47

0.40 0.40 -21 15.10 257086 5761 83.12

0.35 0.35 -22 14.70 53021 910 21.08

0.30 0.30 -23 14.40 199588 4169 57.42

0.25 0.25 -24 14.30 127886 2990 38.51

0.20 0.20 -25 14.00 77810 1788 28.67

0.15 0.15 -26 13.90 42166 1128 19.09

0.10 0.15 -26 13.90 35592 1063 16.5

0.05 0.15 -26 13.90 46643 1222 15.92

0.00 0.15 -26 13.90 50547 1261 19.51

* 0.15 -26 13.90 44394 1792 12.82

Model 2 1.00 -9 72655 633 34.16

Model 3 0.00 -29 11065 61 7.00

* The performance of the original contiguity model by Williams (2002).

Figure 6. Spatial configurations of results using different c0 values 

The shaded symbols represent the acquired land parcels.



from 0 to 0.15; these solutions are also as same as

the solution to the original model by Williams

(2002). This is because there is no solution that

yields a smaller acquisition cost and exhibits a

more compact shape than c0 (as specified by

Equation 11). 

Finally, the tradeoff between total acquisition

cost and the compactness is shown in Figure 7,

where the dots, starting from the rightmost,

correspond to solutions illustrated in Figures 6a to

u and Table 1 respectively. It can be noted the

concave shape of the tradeoff curve. As proximity

degree is close to 1 which indicates the most

compact areas, the land acquisition cost becomes

high and vice versa. This observation is useful to

develop multiobjective models in many

applications that require to minimize the cost and

to maximize the compactness simultaneously. In

this paper, we solve the problem by converting

the compactness objective to a constraint

(Equation 11). Some commonly used

multiobjective solution approaches (e.g.,

weighted sum) require the convexity of the

tradeoff curve (see Cohon 1978), which however

may not be satisfied in many applications (such

as the one presented in this paper). 

For computational experiments using irregular

data, Model 2 is used here to demonstrate the

usefulness of the model because it is impossible

to analytically derive the upper and the lower

bounds of the proximity degree. Model 2

produces the most compact shapes by

maximizing proximity degree as a result. Figure 8

shows spatial configuration results using irregular

data when p=30. For comparison, the original

contiguity model by Williams (2002) is also

presented. Computational results show that

Model 2 finds the most compact and contiguity

area while the original model by Williams (2002)

finds contiguous area.
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Figure 7. The tradeoff between total acquisition cost and
compactness (measured by proximity degree)

Figure 8. Spatial configuration using Irregular data (Iowa) when p=30



4. Concluding Discussion

We developed a spanning tree-based

compactness measure termed proximity degree

that can be used in modeling contiguous land

acquisition problems. Proximity degree is

alternative new measure to capture compact area.

Different from many existing compactness

measures, proximity degree is designed to

capture the internal structure acquired land

parcels using the closeness of vertices by taking

into account the length of edges used to

construct the spanning tree of the graph. From

several computational experiments, the new

measure called proximity degree can be applied

to both regular and irregular cases, and

depending on different proximity degrees,

diverse compact land parcels can be founded. It

should be noted that proximity degree is not an

exception to the common problems with

compactness measures such as subjectivity

(Young 1988; Altman 1998). However, we argue

that this new measure is especially suitable for

applications for the purpose of searching for a

single contiguous cluster of land parcels. Though

we only demonstrated the use of this measure in

the context of a particular formulation of land

acquisition problems, it will be relatively

straightforward to implement the measure in

other formulations that utilize graph theory. 

Several variations or extensions are possible for

future research. The first extension is the

development of multiobjective optimization

approaches (exact or heuristic methods) in order

to find lots of compromised solutions. Among

them, the best compromised solution can be

selected. For heuristic methods, it is necessary to

implement more effective and efficient heuristic.

Another extension is the application to other

related problems such as political redistricting,

school districting, emergency service territories

and electrical power districting. Compactness is

also an essential factor in these problems. The

idea to measure compactness in this paper can

used to develop new optimization models in

these areas. 

Appendix

For a regular graph, the length between two arcs i and j is

always 1 (i. e., dij=1). The upper bound of proximity degree

can be derived given the value of p:

if p=m2+k(0≤k≤m-1) (A2)

if p=m(m+1)+k(0≤k≤m-1)

where m is any positive integer, k is an integer between 0

and m-1, and t(k) is function defined as:

(A2)

We first prove the correctness of equation A1 for the cases

when p equals m2 or m(m+1) and k is 0. For the case of p

=m2, the graph is the most compact when the vertices are

arranged into a block of m rows and m columns. In this

case, the total number of edges in the subgraph is 2[(m-

1)2+m-1]. Because a spanning tree of such a subgraph

contains m2-1 edges, according to the definition of

proximity degree, we have Wij=2[(m-1)2+m-1]-(m2-

1)=(m-1)2. Xij is always p-1. Therefore, we have 

cmax=(m-1)2-(p-1). Similarly, when p=m(m+1), the subgraph

is the most compact when the vertices are arranged into a

block with m rows and m+1 columns. In this case, the total

number of edges in the subgraph is 2m2-1. Because a

spanning tree of such a graph consists m2+m-1 of edges, we

have Wij=2m2-1-(m2+m-1)=m(m-1)·. Again, 

Xij is always p-1. Therefore, we have cmax=m(m-1)-(p-1).

Compactness cases can be derived using extensions of the

above two cases by increasing k vertices(0≤k≤m-1). For

p=m2+k, when one parcel is added (k=1), the total number

of edges in the subgraph becomes 2[(m-1)2+m-1]+1.

Because a spanning tree of such a subgraph contains

(m2+1)-1 edges, we have Wij=2[(m-1)2+m-1]+1-∑
j∈Di

∑
i

∑
j∈Di

∑
i

∑
j∈Di

∑
i

∑
j∈Di

∑
i

∑
j∈Di

∑
i
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t(k)”0 if k=0, 1

k-1 if k≥2

cmin” (m-1)2+t(k)-(p-1)

m(m-1)+t(k)-(p-1)



[(m2+1)-1]=(m-1)2. Xij always is p-1. So, we have 

cmax=(m-1)2-(p-1). When k≥2, adding one vertex to the

subgraph will increase the value of Wij by 1 (Figure

Ala). Hence, we have Wij=(m-1)2+k-1. Here, 

Xij is always p-1. Therefore, we have cmax=[(m-1)2+k-1]-(p-1).

Similarly, for the case of p=m(m+1)+k, when one parcel is

added (k=1), the total number of edges is increasing with

(2m2-1)+1. Because a spanning tree of such a graph

contains [m(m+1)+1]-1 edges, we have Wij=[(2m2-

1)+1]-[(m(m+1)+1-1]=m(m-1). When k≥2, adding one vertex

to the subgraph will increase the value of Wij by 1

(Figure Alb). So, we have Wij=m(m-1)+k-1. Here, 

Xij is always p-1. Therefore, we have cmax=[m(m-1)+k-1]-

(p-1). 
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Figure A1. Adding k vertices to a block of (a) m2 or 
(b) m(m+1) vertices. 

A dashed line represents an edge in the subgraph but not in

the subtree, and a thick solid line represents an edge in the

subtree.
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