DOI QR코드

DOI QR Code

Evaluation of Characteristics of Peanut Sprout Using Korean Cultivars

땅콩 품종을 이용한 싹나물 특성 평가

  • 배석복 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 하태정 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이명희 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 황정동 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 심강보 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 박장환 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 박금룡 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 백인열 (농촌진흥청 국립식량과학원 기능성작물부)
  • Received : 2011.10.06
  • Accepted : 2011.12.10
  • Published : 2011.12.30

Abstract

This experiment was conducted to select suitable cultivars and evaluate growth characteristics to get basic information for sprouting peanut. On sprouting peanut, it showed a rapid increase in trans-resveratrol content that has effects on anti-cancer, anti-inflammatory, blood-sugar-lowering and other beneficial cardiovascular in mouse. For this experiment, characteristics of peanut sprouts were tested in 37 cultivars grown for 7 days at $26^{\circ}C$ temperature. There were a lots of variations in the growth characteristics among cultivars as followers : The range of 100 grain weight was 56 to 142 g, hypocotyl length was 4.3 cm to 5.8 cm, diameter of hypocotyl was 5.0 to 8.0 mm, epicotyl length was 0.8 cm to 4.6 cm, seedling ratio per seed number was 84% to 100%, weight per seedling was 4.9 g to 8.4 g, the rate of hypocotyl cleavage was 0% to 46%, the content of trans-resveratrol was $22.5\;{\mu}g/g$ to $88.2\;{\mu}g/g$ and sprout yield was 360% to 820%. The selection points considered were high sprout yield, high seedling rate, high resveratrol content, low brownish cotyledon, no hypocotyl cleavage, and fat hypocotyl etc. The best cultivar selected was 'Jokwang' that showed 7.8 mm diameter, clean cotyledon color, 100% seedling rate, 0% hypocotyl cleavage, $63.3\;{\mu}g/g$ resveratrol, and 820% sprouting yield. This cultivar was expected to be of use as a new food and nutraceutical material. Relationship between growth characteristics showed that root length had significant positive correlations with epicotyl length, resveratrol content and sprouting yield but negative correlations with hypocotyl diameter and cleavage. Hundred grain weight showed negative correlations with resveratrol content, seedling rate and sprouting yield but positively correlated with curved hypocotyl rate and hypocotyl cleavage positively. This result showed small grain seed will be more appropriate for sprouting peanut.

땅콩의 새로운 수요개발을 위해 국내 육성품종 37종에 대한 땅콩 싹나물 비교시험을 통하여 싹나물에 적합한 우량품종을 선발하고 생육형질 상호간의 관계를 조사여 싹나물 연구를 위한 기초 자료자료로 활용하고자 수행한 결과는 다음과 같다. 본 시험에 이용한 각 품종의 100립중은 조광 56 g에서 호광 142 g까지 넓게 분포하였다. 전체품종의 하배축길이는 팔광 4.3 cm에서 대신 5.8 cm 분포하고 평균 5.1 cm였으며 하배축의 직경은 평균 6.9 mm 미광 5.0 mm에서 대청 8.0mm까지 걸쳐 분포하였다. 뿌리길이는 대청 11.1 cm에서 미광 20.6 mm에 분포하였으며 평균 14.6 cm이였다. 상배축의 길이는 평균 1.8 cm로서 대풍 0.8 cm에서 미광 4.6 cm에 걸쳐 분포하였다. 미광은 하배축이 가늘고 짧으며, 상배축과 뿌리가 가장 길었고 기능성 성분 resveratrol 함량($88.2\;{\mu}g/g$)도 높았다. 중소립종 조광은 하배축의 길이(5.0 cm)가 짧은 편이나 하배축 직경(7.8 mm)은 통통하고 싹나물의 크기가 균일하며 수율은 820%로 가장 높았으며 특히 깨끗한 외관 품질을 가져 땅콩 싹나물로 적합한 특성을 가졌다. 땅콩 싹나물 형질 상호간의 상관관계에서 땅콩 종자의 100립중은 싹나물의 resveratrol함량, 성묘율, 수율과는 부(-)의 상관관계를 나타냈고, 묘중, 곡묘 하배축 개열성과는 정(+)의 상관관계를 나타내었다. 또한 싹나물 뿌리 길이는 상배축의 길이, resveratrol 함량, 수율과는 정의 관계를 나타내고 하배축 직경과 개열성과는 부의 관계를 나타냈다.

Keywords

References

  1. Aggarwal B. B., Bhardwaj A., Aggarwal R. S., Seeram N. P., Shishodia S. and Takada Y.. 2004. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 24 : 2783-2840.
  2. Burns J., Yokata T., Ashihira T., Lean MEJ. and Crozier A.. 2002. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 50 : 3337-3340. https://doi.org/10.1021/jf0112973
  3. Chen, R. S., P. L. Wu, and Y. Y. Chiou, 2002. Peanut roots as source of resveratrol. J. Agric. Food. Chem. 50 : 1665-1667. https://doi.org/10.1021/jf011134e
  4. Harold E. Pattee and H. Thomas Stalker, 1996. Advances in peanut science. APRES pp. 614.
  5. Kim, J. S., Lee, S. Y. and S. U. Park. 2008. Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. African J. of Biotechnology 7(20) : 3788-3790.
  6. King R. E., Kent K. D. and Bomser J. A.. 2005. Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal regulated kinase inhibition. Chem. Biol. Interact. 151 : 143-149. https://doi.org/10.1016/j.cbi.2004.11.003
  7. Ku K. L., Chang Y. C. and Lien C. Y.. 2005. Production of stilbenoids from the cellus of Arachis hypogaea; a novel source of the anticancer compound piceatannol. J. Agric. Food Chem. 53 : 3877-3881. https://doi.org/10.1021/jf050242o
  8. Laux M. T. and Aregullin M. 2004. Identification of a p53-dependent pathway in the induction of apoptosis of human breast cancer cells by the natural product, resveratrol. J. Altern. Complement Med. 10 : 235-239. https://doi.org/10.1089/107555304323062211
  9. Medina-Bolivar F., Condori J., Rimando A. M., Hubstenburger J., Shelton K., O'Keefe S. F., Bennett S. and Dolan M. C.. 2007. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68 : 1992-2003. https://doi.org/10.1016/j.phytochem.2007.04.039
  10. Sharma K. K. and Bhatnagar-Mathur P. 2006. Peanut (Arachis hypogaea L.). Methods Mol. Biol. 343 : 347-358.
  11. Wang, M. L. and R. N. Pittman. 2008. Rsveratrol content in seeds of peanut germplasm quantitified by HPLC. Plant Genetis Resources: Characterization abd Utilization: 1-4.
  12. Wenzel M. and Somoza V.. 2005. Metabolism and bioavailability of trans-resveratrol. Mol. Natr. Food Res. 49 : 472-481. https://doi.org/10.1002/mnfr.200500010

Cited by

  1. Bioactivity analysis of Resveratrol from peanut sprouts using On-line screening HPLC-ABTS vol.14, pp.8, 2013, https://doi.org/10.5762/KAIS.2013.14.8.4100
  2. Establishment of Seed Treatment for Healthy Production of Peanut Sprout vol.24, pp.6, 2015, https://doi.org/10.5322/JESI.2015.24.6.755
  3. Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review vol.12, pp.3, 2013, https://doi.org/10.1007/s11157-012-9294-7
  4. Resveratrol, total phenolic and flavonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts vol.27, pp.5, 2018, https://doi.org/10.1007/s10068-018-0364-7
  5. A Virginia Typed Short Stem and Large Grain Peanut Variety 'Ahwon' vol.50, pp.2, 2018, https://doi.org/10.9787/KJBS.2018.50.2.165
  6. 땅콩나물용 품종선발과 고함량 레스베라트롤 생육단계 구명 vol.24, pp.2, 2015, https://doi.org/10.12791/ksbec.2015.24.2.063
  7. 땅콩나물 생산에서 세근발생 억제 조건에 관한 연구 vol.25, pp.3, 2011, https://doi.org/10.12791/ksbec.2016.25.3.177
  8. Virginia-Typed Short Stem and Large Grain Peanut Variety ‘Tamsil’ vol.51, pp.2, 2011, https://doi.org/10.9787/kjbs.2019.51.2.116