에너지 관리 시스템의 기능 요구사항 분석

한광희† · 황보람‡ †

요 약
본 연구에서는 에너지 관리 시스템의 기능 요건을 정립하기 위한 하향식 기능 분석 절차를 제안하고 바람직한 기능 요구사항들을 도출하였다. 하향식 기능 분석을 위해 벤치마킹 대상인 에너지 관리 시스템 제품들이 제공하는 공동된 기능들을 추출하고, 이들을 기능 그룹 단위로 집합하여 7개의 서브시스템으로 분화하고 각 서브시스템 내에서 제공해야 할 기능들을 분류하여 비교용 탭플리트를 만들었다. 벤치마킹은 이 비교용 탭플리트에 의거하여 각 상용 제품에서 제공하는 기능들을 분류하여 기능 제공 유무를 기입하는 방법으로 수행되었다. 벤치마킹 결과로 에너지 관리 시스템이 갖추어야 할 바람직한 기능들을 추출하여 이를 상세하게 설명하였다. 이 연구의 결과는 에너지 관리 시스템을 개발하거나 도입하려는 관련자들에게 에너지 관리 시스템이 갖추어야 할 필요 기능에 관한 유용한 정보를 제공한다.

주제어: 에너지, 에너지 관리 시스템, 기능 요구사항, 하향식 모델링, 에너지 시뮬레이션

Functional Requirements Analysis of Energy Management System

Kwan-Hee Han† · Bo-Ram Hwang† †

ABSTRACT
Presented in this study is a top-down functional modeling procedure and the desired functionalities of energy management system (EMS). For the purpose of top-down modeling for EMS, energy management system is categorized into 7 subsystems based on common functionalities and energy management life cycle. After that, benchmarking analysis of commercially major EMS products is conducted. As a result of this analysis, desired functionalities of each subsystem of EMS are suggested in this study. This study is served as a useful guidance about essential functional requirements of energy management system to the practitioners involved in the development or introduction of EMS.

Key words: Energy, Energy Management System, Functional Requirement, Top-down Modeling, Energy Simulation

† 경상대학교 산업시스템공학부/공학연구원 (교신저자)
‡ † 경상대학교 산업시스템공학부
* 본 연구는 교육과학기술부와 한국연구재단의 지역혁신인력양성사업으로 수행된 연구결과임.
1. 서론

최근 들어 지속적인 지구 온난화 추세 및 유가의 급격한 상승으로 인해 에너지의 효율적 사용에 관한 관심이 크게 고조되고 있으며, 이에 따라 체계적인 에너지 관리 시스템의 도입 필요성이 점증하고 있는 실정이다. 에너지를 사용 분야에 따라 크게 구분하면 가정용, 산업용, 수송용으로 나눌 수 있는데, 이 중에서 산업용이 55%을 차지하여 특히 산업현장에서는 사용하고 있는 에너지의 절감 및 효율적 운전 방법 등을 적극 모색하고 있는 실정이다.

우리나라의 경우 해외 에너지 의존도가 97%이 상하고 있어 국가적인 에너지 절약 노력이 경제 성장에 필수적인 요소가 되고 있는데, 이에 비해 에너지의 효율적 사용을 위한 에너지 관리 시스템 (EMS: Energy Management System)의 개발 및 도입은 다른 외국 선진국에 비해 지각한 실정이다. 에너지 관리 시스템은 첨단 IT 기술과 에너지 관리 기술이 통합된 복합 기술로 미래 세세계적으로 미국, 독일, 프랑스, 일본 등 선진국에서 많은 연구 및 개발이 선도되고 있으며, 최근 우리나라에서도 에너지 관리 시스템의 중요성을 인지하고 그런 에너지 정책을 통하여 연구 및 기술 지원이 지속적으로 증가하고 있는 추세이다.

본 연구에서는 에너지 관리 시스템이라는 정보 시스템 개발에 따른 효과적인 기능 분석 절차와 그 결과물에 대해 다루는데, 소프트웨어 개발에서의 에너지 관리 시스템은 일반적인 기업 정보 시스템 개발과 유사한 단계를 거쳐서 개발 된다. 일반적인 기업 정보 시스템 개발을 위한 단계는 아래와 같다[7].

1) 기업 프로세스 분석
2) 기능 요구사항 분석
3) 시스템 분석
4) 아키텍처 설계
5) 상세 설계
6) 구현/테스트

위의 각 단계를 진행할 때는 그 단계에서의 결과물이 생성하는데, 각 결과물들은 다음 단계를 위한 기본 입력 자료로 활용되며 공극적으로는 개발된 시스템이 성공적으로 수행되는지에 대한 측정 기준으로서 역할을 한다. 즉, 1단계에서는 기업 프로세스를 기술한 ‘to-be 프로세스 모델’이 산출되며, 2단계인 기능 요구사항 분석 단계에는 해당 정보 시스템이 가져야 할 바람직한 기능 요건들이 ‘기능 모델의 이름으로 작성된다. 여기서 모델이 특정한 관점에 근거하여 대상 시스템을 추상화한 것으로, 본 논문에서는 각 단계에서 산출되는 결과물을 모델이라 한다. 위의 여섯 단계에서 산출되는 모들을 정리하면 <표 1>과 같다.

특히는 정보 시스템이 제공하는 기능을 확정하는 작업은 두 번째 단계인 기능 요구사항 분석 단계에서 이루어지는데, 이 단계는 시스템이 만족시켜야 할 요구사항의 발견, 정의 및 명세화하는 과정이며 기능 모델링 단계라고도 하며, 이 단계의 결과물은 해당 시스템이 갖추어야 하는 기능 요건들을 정리한 기능 모델이다.

본 연구의 목표는 1) 에너지 관리 시스템 개발을 위한 여섯 단계 중 두 번째 단계인 ‘기능 모델’을 산출하기 위한 효과적인 절차 및 방법을 제시하고, 2) 이를 바탕으로 국내 기업에 적합한 에너지 관리 시스템 기능 요건들을 정립하는 것이다.

<표 1> 정보 시스템 개발 단계별 산출물

<table>
<thead>
<tr>
<th>개발 단계</th>
<th>개발 단계명</th>
<th>결과물 (모델)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>기업 프로세스 분석</td>
<td>‘as-is’프로세스모델</td>
</tr>
<tr>
<td></td>
<td>‘to-be’프로세스모델</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>기능 요구사항 분석</td>
<td>기능 모델</td>
</tr>
<tr>
<td>3</td>
<td>시스템 분석</td>
<td>분석 모델</td>
</tr>
<tr>
<td>4</td>
<td>아키텍처 설계</td>
<td>아키텍처 모델</td>
</tr>
<tr>
<td>5</td>
<td>상세 설계</td>
<td>설계 모델</td>
</tr>
<tr>
<td>6</td>
<td>구현/테스트</td>
<td>구현/테스트 모델</td>
</tr>
</tbody>
</table>

2. 기능 분석 접근 방식 및 기존 연구

정보 시스템 개발을 위해 가장 중요한 단계는 해당 정보 시스템이 제공해야 할 기능을 확정하는 일이다. 정보 시스템 개발 과정을 요약하자면 기능적 요구사항을 소프트웨어 시스템으로 변환하는 것이므로, 제공 기능들이 확정되어야 그 이후의 단계들이 진행될 수 있다. 그래서 제공 기능을 효과적으로 찾아내
는 작업은 과거의 구조적 방법론에서부터 최근의 캐
체지향 방법론에 이르기까지 가장 주요한 과제가 되
고 있다. 에너지 관리 시스템과 같은 기업 정보 시스
템의 바람직한 제공 기능을 확장하는 방법은 크게 상
향식 접근 방식 (bottom-up approach)과 하향식 접근
방식 (top-down approach)으로 나눌 수 있다.

상향식 접근 방식은 전통적으로 많이 행해졌던 방
식으로, 이 방식은 데이터와 프로세스 중 어느 부분
에 중점을 두느냐에 따라 다시 데이터 중심 방법과
프로세스 중심 방법으로 나눌 수 있다.

하향식 접근 방식은 ERP (Enterprise Resource
Planning) 시스템 같은 상용 패키지를 기업에 도입할
때 바람직한 기능을 확장하기 위해 왕비범위하게 사용
되는 방법으로, 이 방법에서는 기업 정보 시스템이
일반적으로 갖추어야 하는 기능들을 정의하는 것에서부터
시작하여, 일반적인 기능들을 해당 기업에 맞게
계층적으로 구체화해 나가는 과정을 거친다[5].

하향식 접근 방식은 일반적으로 정립된 바람직한 기능
결합으로부터 시작하므로 비교적 짧은 시간에 기능
요건을 정의할 수 있고, 요건 정의에 해당 산업
에서 인정된 바람직한 기능 (Best Practice)들을 찾아
낼 수 있다는 장점이 있으나, 정립된 기능들이 해당
기업에 적합하지 않기 때문에 검증 모델링 초기에 이루어
질 수 없다는 단점이 있다. 그리고 이 방법은
ERP 시스템과 같이 일반적인 수행 기능들이 널리 알
려진 응용 분야에서 사용가능하며, 산업의 특수성이
나 응용 분야 기능의 복잡성이 인해 바람직한 기능
요건이 잘 알려져 있지 않은 분야에서는 적용하기 어
럽게 된다.

관련 연구로 한편화와 박찬우 (2002)는 하향식 접근
방법을 이용하여 제품 설계 단계에서의 PDM
(Product Data Management) 시스템의 기능적 요구
사항을 분석한 효과적인 절차와 그 결과물인 기능
요건들을 제시하였다[7]. 역시 한판화와 박찬우
(2004)에서는 설계·생산 통합 정보 시스템의 개발을
위해 하향식 접근 방법의 하나인 QFD (Quality
Function Deployment) 방법을 이용하여 설계/생산
통합 정보 시스템의 갖추어야 할 기능 요구사항을 도
출하는 효과적인 방법 및 절차가 실 사례를 통해 제
시되었다[8].

이규봉과 고민재 (2011)는 제조 현장에서 사용되는
에너지 자원을 효율적으로 관리하여 에너지 소비와
만소 배출을 최소화할 수 있는 에너지 차원 관리 시
스템의 주요 기능을 설계에서 전시적 관리 레벨까지
계층적으로 정리하였다[3]. 이규봉 외 (2010)에서는
생산 현장의 에너지 효율 최적화를 위한 새로운
MES (Manufacturing Execution System) 프레임워
크를 제안하였으나, 프레임워크의 자세한 구성 내용
은 제시되지 않았다[4].

이무호 외 (1998)에서는 플랜트를 구성하는 각 단위
공정으로부터 요구되는 스펙관 가전 수요량을 최적으
로 맞추며 에너지 비용을 최소로 줄기위해 실시간
최적화를 이용한 에너지 관리 시스템이 개발되었다.
 이를 위해 유필리터 플랜트의 모델링, 데이터 보정,
실시간 최적화 기술을 통합 시스템으로 구축하여
에너지 관리를 보다 효율적으로 수행할 수 있는 환경
을 구축하였다[6].

Portland Energy Conservation Inc. (1997)에서는
에너지 관리 시스템의 평가와 선정 및 도입에 관한
체계적인 절차가 제시되었다[9]. 김현일 (2007)에서는
보다 큰 블록에서의 우리나라 에너지 경영 시스템의 도
입과 추진 현황을 정리하였다[1]. 에너지 경영 시스템
이란 에너지 절약을 위해 경영적 측면과 기술적 측면
에서 기업이 어떻게 대응하여야 하는가에 대한 구체
적 요구사항을 국가 규격 (에너지 경영 시스템 국
가 규격)으로 규정하고, 기업이 이러한 요구사항에
적합하게 대응하였음을 제3자인 공공기관 (인증기관)
이 평가하고 인증하는 제도를 말한다.

김현제와 조성한 (2011)은 에너지 효율을 최적화하
는 채매 전력망인 스마트 그리드 도입으로 촉발되
고 있는 균형적 환경 변화에 따라 다양한 스마트 그리
드 시장 참여자 가운데 가장 중요한 위치를 담당하
게 될 전기 소비자의 역할 및 소비자 보호 대책을 모
색하였다[2].

기존의 연구에서 살펴 본 바와 같이 에너지 관리
시스템 개발을 위해 시스템이 제공해야 할 바람직한
기능 요건을 도출하는 방법에 대한 연구는 그 중요성
에 비해 활발히 이루어지지 않고 있어, 본 연구에서
는 밴치마킹 (benchmarking)에 의한 하향식 접근 방
식을 통한 에너지 관리 시스템 기능 요구 도출 방안
을 제시하고자 한다. 이하에서의 하향식 접근 방식에
의한 기능 분석 절차를 설명한다.
3. 하향식 기능 분석 절차

본 연구에서 제시하는 하향식 접근 방식에 의한 기능 분석 절차는 다음과 같은 단계를 거칩니다.
① 벤처마킹 대상 제품 선정
② 서브시스템 분류
③ 벤치마킹
④ 각 서브시스템별 기능 정리

이하 각 절에서는 구체적인 사례를 통하여 하향식 기능 분석 단계에서의 작화 및 그 결과물을 설명한다. 본 연구는 국내 제조업체에 적합한 에너지 관리 시스템의 기능 요건을 도출하기 위하여 수행하였다.

3.1 벤치마킹 대상 제품 선정


3.2 서브시스템 분류

이 단계에서는 개발하고자 하는 벤치마킹 대상인 에너지 관리 시스템 제품들을 기반으로 공통된 기능들을 추출하고, 이들을 기능 그룹 단위로 분류하여 복수 개의 서브시스템으로 분화한다. 이것은 두 가지 목적을 가지고 있는데, 첫째는 바람직한 기능 요건들을 계층적으로 분해해 나가기 위해 기능 구조를 확정하기 위한 것이고, 둘째는 벤치마킹 대상 제품들의 기능 분석을 위한 비교 기준 않드로토리를 만들기 위한 것이다.

본 연구에서는 에너지 관리 시스템의 공통된 기능들을 선별할 때, 일반적인 PDCA 사례과 유사한 에너지 관리 라이프 사이클을 중심으로 서브시스템을 분류하였다. 에너지 관리는, [그림 1]에서와 같이, 1) 해당 조직의 에너지 목표를 설정하고 실적과 비교 평가하고, 2) 실제 현장에서의 에너지 사용량을 측정/

[그림 1] 에너지 관리 Life Cycle

/점계하고 사용 현황을 실시간 모니터링하며, 4) 사용 실적을 바탕으로 향후 에너지 목표 설정을 위한 에너지 예측 및 시뮬레이션을 수행하는 사례를 구 성한다.

즉, 에너지 목표 관리-에너지 용도/점계 및 모니터링-에너지 예측 및 시뮬레이션의 3가지를 핵심 기능으로 삼고, 그 원리에 ① 사용자 정보 및 사용자의 시스템 간의 시스템에 대한 간단한 관리 및 시스템 관리 기능과, ② 시스템의 사용자가 에너지 관리에 필요한 각종 마스터 정보를 관리하는 기초 정보 관리 기능과, ③ 휴대용 스마트기기와 협업을 통한 시스템과의 연계 기능, ④ 에너지 관리 시스템에 총계된 각종 분석 데이터를 이용하여 실제 각 건물에 설치되어 있는 각종 설비들에 제어하는 설비 제어 기능을 추가가 부가하여 배치하였다. [그림 2]에 7개의 서브시스템으로 이루어진 에너지 관리 시스템 기능 구성도를 보인다.

[그림 2] 에너지 관리 시스템 기능 구성도
<table>
<thead>
<tr>
<th>주요 기능</th>
<th>EMS별 기능 유무</th>
</tr>
</thead>
<tbody>
<tr>
<td>상세 기능</td>
<td>Visual Energy (XN 솔루션)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3. 에너지 측정/집계 및 모니터링</td>
<td>사용량 분석</td>
</tr>
<tr>
<td></td>
<td>부하량 분석</td>
</tr>
<tr>
<td></td>
<td>효율 분석</td>
</tr>
<tr>
<td></td>
<td>에너지 모니터링</td>
</tr>
<tr>
<td></td>
<td>사용자 지정 보고서 작성</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주요 기능</th>
<th>EMS별 기능 유무</th>
</tr>
</thead>
<tbody>
<tr>
<td>상세 기능</td>
<td>Visual Energy (XN 솔루션)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4. 에너지 사용예측 및 시뮬레이션</td>
<td>에너지 시뮬레이션</td>
</tr>
<tr>
<td></td>
<td>건물일반 주기 평가</td>
</tr>
<tr>
<td></td>
<td>설비 성능 분석</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주요 기능</th>
<th>EMS별 기능 유무</th>
</tr>
</thead>
<tbody>
<tr>
<td>상세 기능</td>
<td>Visual Energy (XN 솔루션)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5. 에너지 목표 관리</td>
<td>에너지절약 목표 설정</td>
</tr>
<tr>
<td></td>
<td>목표대비 사용량 분석</td>
</tr>
<tr>
<td></td>
<td>목표대비 효율 분석</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주요 기능</th>
<th>EMS별 기능 유무</th>
</tr>
</thead>
<tbody>
<tr>
<td>상세 기능</td>
<td>Visual Energy (XN 솔루션)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. 외부 시스템 연계</td>
<td>스마트가기 연계</td>
</tr>
<tr>
<td></td>
<td>관련 프로그램 연동</td>
</tr>
<tr>
<td></td>
<td>원격제어</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주요 기능</th>
<th>EMS별 기능 유무</th>
</tr>
</thead>
<tbody>
<tr>
<td>상세 기능</td>
<td>Visual Energy (XN 솔루션)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7. 설비 제어</td>
<td>공조기 제어</td>
</tr>
<tr>
<td></td>
<td>계량기 제어</td>
</tr>
<tr>
<td></td>
<td>조명 제어</td>
</tr>
</tbody>
</table>

3.3 벤치마킹

벤치마킹은 기업의 경쟁력에 대한 대산제를 대상으로 제품을 공급자에서 제공하는 기술로써, 대상 제품의 사용하는 기업의 사용자 방면 조사, 제3의 기관에서 발행하는 에너지 관리 시스템 제품 분석 보고서 및 에너지 관리 시스템 관련 논문 조사를 병행하여 수행하였다.

우선, 벤치마킹 전에 에너지 관리 시스템의 기능을 32절에서와 같이 크게 7개의 시스템별로 구분하여 각 시스템별로 제공해야 할 기능 그룹들을 분류하여, 이를 텔레프리토로 만들었다. 벤치마킹은 이 비교 분석 방법을 이용하여 각 상용 제품에서 제공하는 기능들을 분류하여 기능 제공 유무 및 기능의 정도를 비교하여 기술적으로, 시스템 관리와 기업 정보 관리 및 상용 시스템의 기능을 비교하여 기술적 수준을 평가하였다.

<표 2>는 에너지 사용자 및 모니터링에 관한 기능 분석표로서, 에너지 사용을 측정하고 수집하는 기기의 기능이다. 이 표에서 보면 다양한 에너지원으로부터의 사용 현황을 실시간 모니터링 하는 기능이 새롭게 요구됨을 알 수 있다.

<표 3>에서는 에너지 사용 및 시뮬레이션 시스템의 기능을 비교하고 있는데, 이 시스템에서는 에너지 관리 목표 설정을 위해 기존에 축적된 에너지 실적 데이터를 이용하여 미래의 에너지 사용량과 에너지 효율을 시뮬레이션을 통해 미래 예측하고 대비하는 기능을 제공하는 기술이 존재한다. 특히, 시뮬레이션의 경우 미국 NIST의 CBS 시스템이 상세한 기능을 제공하고 있으며, 건물 일정 시간 동안의 경우는 NIST에서 개발한 BEES(비교적 충실하게 관련 기능을 제공하고 있다. 실적 성능 분석의 경우는 대상 제품들 중에서 NIST의 Energy Star가 실적의 제어 성능에 맞춰 등급 랭보를 부여하여 관리하는 기능을 제공하는 등 상세 기능을 제공하고 있다.

<표 4>은 에너지 사용 관리 기능을 비교한 것인데, 벤치마킹 대상 제품 모두 공통된 기능을 제공하고 있음을 알 수 있다. 이 시스템에서는 집계된 에너지 실적을 토대로 에너지 절약 및 관리를 위한 전략을 결정하는 기능으로 에너지 사용 목표를 설정하고 목표 대비 에너지 사용 실적을 비교 분석하는 기능을 제공한다.

<표 5>에서는 외부 시스템 연계 시스템의 기능을 비교하고 있는데, 이는 주로 외국의 시스템에서 고도화된 기능으로 스마트폰 등 모바일 기기들이 이용한 실시간 데이터 확인 및 인터넷을 통해 원격 제어를 주요 기능으로 하고 있다.

<표 6>에서는 설비 제어 시스템에 대한 기능 비교를 보여준다. 이 시스템에서는 공조기나 계량기 및 모바일 설비의 H/W적인 제어 및 관리를 위한 기능을 제공한다. 거의 대부분의 벤치마킹 대상 제품들이 해당 기능들을 제공하여 이들 기능이 에너지 관리 시스템의 공동 기능으로 정착하고 있음을 알 수 있다.

3.4 각 시스템별 기능 정리

32절에서 에너지 관리 시스템의 주요 기능을 에너지 관리 라이프 사이클을 근간으로 3개의 핵심 기능과 4개의 부가 기능으로 구성하여 총 7개의 시스템별로 분류하여 제시하였다. 이 절에서는 33절의 벤치마킹 결과를 기준으로 각 상용 제품이 제공하는 기능 설명 자료에 근거하여, 1) 모든 상용 제품이 공통적으로 제공하는 기능들, 2) 에너지 관리 라이프 사이클의 필수적인 기능들로 추출하여 에너지 관리 시스템이 갖추어야 하는 바람직한 기능 요구들을 정리하였다. 아래에서 각 시스템별 필요 기능들을 서술한다.

3.4.1 시스템 관리 시스템

시스템 관리 시스템은 에너지 관리 시스템에서 실제 시스템을 사용할 사용자 등록 및 동록된 사용자에게 필요한 시스템 권한을 동록하는 기능을 수행하며, 계측기와 설비의 제어 및 관리 및 각종 에너지 제한의 관리와 관련 기능을 제공한다. [그림3]에 시스템 관리 시스템에 대한 기능 구조도를 나타낸다.

사용자 등록에서는 에너지 관리 시스템을 사용할 사용자에 대한 기초 데이터를 동록하여 시스템이 사용자를 인식할 수 있도록 하는 기능이다. 사용자 권
한 등록에서는 시스템에 등록된 사용자들의 적권이나 보안 등급에 따라 시스템의 어느 부분까지 사용할 수 있는지에 대한 시스템 관리를 설정하는 기능이다. 위치 트리는 시스템이 각 환경에 맞게 제어나 모니터링해야 하는 설치나 계층기에 대한 구성을 트리 형태로 계층적으로 구성하여 시스템이 관리해야하는 대상의 범위를 미리 설정하는 기능이다. 공식 설정 기능은 에너지 사용 분석 및 예측에 필요한 각종 에너지 관련 공식을 설정하는 기능이다. 즉, 에너지 관리에 필요한 여러 가지 공식 중 필요한 공식을 선택하여 필요에 따라 다양한 공식을 적용 해 볼 수 있도록 하는 기능이다.

[그림 3] 시스템 관리 서브시스템

3.4.2 기준 정보 관리 서브시스템

기준 정보 관리 서브시스템은 에너지 상용 점계/분석 및 관리에 필요한 전반적인 기초 데이터를 등록하는 시스템이다. 기업에서의 에너지 관리에 필요한 각종 설비와 에너지 관련 코드 또한 이 시스템에서 등록된다. [그림 4]에 기준 정보 관리 서브시스템에 대한 기능 구조도를 나타낸다. 에너지 코드 등록 기능은 기업에서 사용하는 에너지원에 대한 기본 정보를 등록하는 기능이며, 장비 코드 등록 기능은 현장에 설치된 각종 설비 및 장비에 대한 정보를 등록하는 기능이다. 계층기 코드 등록 기능은 에너지를 측정할 수 있는 각종 계층기에 대한 정보를 등록하는 기능이다.

TOE (Tonnage of Oil Equivalent) 등록 기능은 서로 다른 에너지 간의 사용량 비교를 위해 석유 1톤을 연소할 때 발생하는 에너지를 1 석유화산소량이라고 정의했을 때, 각종 에너지원의 비교 환산치를 등록하는 기능이다. 에너지 단가 등록 기능은 국가에서 정하는 사용 에너지에 대한 실제 사용 단가를 등록하는 기능이며, 에너지 분석 기법 등록 기능은 각종 에너지 분석 기법에 대해 그 내용 및 실시 방법 등을 등록하는 기능이다.

[그림 4] 기준 정보 관리 서브시스템

3.4.3 에너지 측정/접계 및 모니터링 서브시스템

에너지 측정/접계 및 모니터링 서브시스템은 실제 사용한 에너지를 대상으로 ‘시스템 관리 서브시스템’에서 설정했던 공식 (1.4)과 ‘기준 정보 관리 서브시스템’에서 등록한 에너지 분석 기법 (2.6)들을 이용하여 필요한 데이터를 측정하고 사용 현황을 실시간 모니터링 하며, 사용 결과를 분석하는 시스템이다. [그림 5]에 에너지 측정/접계 및 모니터링 서브시스템에 대한 기능 구조도를 나타낸다.
3.4.4 에너지 예측 및 시뮬레이션 서브시스템

에너지 예측 및 시뮬레이션 서브시스템은 ‘에너지 측정/접계 및 모니터링 서브시스템’을 통하여 수집된 각종 에너지 사용 실적 데이터를 기반으로, 1) 가상의 상황을 설정하여 향후 사용될 에너지 소비량을 예측하는 기능과, 2) 건물의 일:add, 주기 관리에서 에너지 실적을 평가하여 건물의 보수 및 수리 시기를 결정하는 기능과, 3) 설비의 운전 성능을 분석하여 교체 시기를 파악하는 기능들로 이루어져 있다. [그림 6]에 에너지 예측 및 시뮬레이션 서브시스템에 대한 기능 구조도를 나타낸다.

[그림 5] 에너지 측정/접계 및 모니터링 서브시스템

사용량 분석 기능은 일/월/년별로 사용한 에너지 사용량을 집계하고 분석하는 기능을 제공한다. 부하량 분석 기능은 각종 설비나 시설에 걸리는 에너지 부하량을 분석해 부가적 가치를 발휘하여 부하를 정정구간에 대한 데이터를 제공하고, 이들 토대로 에너지 사용 예측에 필요한 기초 데이터를 제공하는 기능이다.

에너지 효율 분석 기능은 에너지 사용량과 부하량 분석에서 얻은 데이터를 종합하여 현재 에너지 사용에 있어서 가격대비 효율에 대한 분석을 수행하는 기능이다.

에너지 모니터링 기능은 에너지 사용 현황을 에너지 소비 대상별로 24시간 동안 실시간 감시하는 기능을 제공한다. 사용자 지정 보고서 작성 기능은 각종 분석 결과를 종합하거나 선택하여 사용자가 원하는 정보를 보고서로 출력할 수 있게 지원하는 기능이다.

3.4.5 에너지 목표 관리 서브시스템

에너지 목표 관리 서브시스템은 ‘에너지 측정/접계 및 모니터링 서브시스템’에서 수집/분석된 데이터와 ‘에너지 예측 및 시뮬레이션 서브시스템’에서 예측된 에너지 사용 패턴을 기반으로, 1) 실제 에너지 관리를 위한 목표를 설정하며, 2) 사용자에게 에너지 관리에 필요한 목표 다핀 실적 정보를 적시에 공급하는 기능을 제공한다. [그림 7]에 에너지 목표 관리 서브시스템의 기능 구조도를 나타낸다.
에너지 관리 시스템의 기능 요구사항 분석

스마트 기기 연계 기능은 사용자가 직접 시스템 사용을 위해 근무지로 이동하지 않아도 휴대용 스마트 기기를 이용하여 시간과 장소에 제약을 받지 않고 필요한 데이터를 조회 및 분석해 볼 수 있는 기능을 제공한다.

관련 시스템 연동 기능의 경우 해당 기업이 운영하고 있는 관련 정보 시스템과의 연동이나 에너지 사용 분석을 위한 다양한 제3의 소프트웨어와 연결하는 기능을 제공한다.

3.4.7 설비 제어 서브시스템

설비 제어 서브시스템은 각종 공조기나 계량기 및 조명등 H/W적인 설비에 대한 제어 및 관리 기능을 제공한다. 공조기 제어와 계량기 제어 및 조명 제어 기능 등이 있으며, '에너지 측정/계량 및 모니터링 서브시스템'을 통하여 수집된 데이터를 이용하여 각 설비들의 운영 시간 및 에너지 효율이 최적 상태를 유지하도록 제어하는 시스템이다. [그림 9]에 설비 제어 서브시스템에 대한 기능 구조도를 나타낸다.

공조기 제어 기능은 에어컨 및 각종 공조기에 대 한 제어를 담당하는 기능으로 '에너지 측정/계량 및 모니터링 서브시스템'에서 수집된 데이터를 토대로 최적의 에너지 효율을 유지하도록 공조기 운영 계획을 설정하고 제어하는 기능을 제공한다.

계량기 제어와 조명 제어 기능 역시 공조기 제어 기능과 동일하게 각 설비들이 최적의 에너지 효율을 유지할 수 있도록 24 시간 모니터링을 통해 제어할 수 있는 기능을 제공한다.
3.5 벤처마킹의 결과

벤처마킹의 결과, 에너지 관리 라이프 사이클과 비추어 국내 및 외산 에너지 관리 시스템들이 모두 공통으로 제공하는 기능들도 많았지만, 아직 국내 개발된 시스템에서는 제공하지 못하는 기능들도 일부 파악되었다. 특히, 국내에서 개발된 에너지 관리 시스템은 외산 시스템과 비교하여 '에너지 사용 예측 및 시뮬레이션 시스템' 기능이 취약한 것으로 분석되었다.

외산 시스템의 경우, 단순히 에너지에 대한 데이터를 집계하여 분석하는 수준에서 벗어나 축적된 데이터를 토대로 가장 이상의 사례를 만들어 앞으로 발생할 에너지 소비에 대해 시뮬레이션 할 수로서 미래의 에너지 소비 패턴을 파악하는데 주력하고 있다.

전달 일정 주기 평가 기능 역시 축적된 에너지 사용 데이터를 토대로 단순한 에너지 이용 실적 데이터를 이용하여 전달의 에너지 효율을 최적화하는 총체적인 접근 방식을 취하고 있다.

추가하여, 국내 개발 시스템의 또 다른 취약 기능으로 '외부 시스템 연계 서비스중'의 제공 기능인 스마트 기기와 웹을 통한가능 유형의 기능 및 원격 제어 기능을 들 수 있다. 스마트 기기와 개념 후드를 이용한 기능은 사용자가 에너지 관리 시스템을 사간과 장소에 구매 받지 않고 휴대용 스마트기기를 이용하여 에너지 관리의 주된 문제를 해결할 수 있는 가능으로 국내의 몇몇 업계에서 사용하고 있으나, 외산 시스템에 비해 제공 기능의 종류와 성능이 부족한 실정이다.

그리고 전문 업체에 의한 에너지 관리의 원격 제어 기능은 중소형 휴대용의 에너지 관리 시스템에 적합한 형태로써, 아직은 대형 건물의 위주로 에너지 관리 시스템을 보급하고 있는 우리나라에서의 아직 제공 기능의 미약한 상황이다. 향후 이 부분에 대한 보다 활발한 개발 노력이 요구된다.

4. 결론 및 향후 과제

2장에서도 언급했듯이 정보 시스템 개발 단계 중에서 가장 중요한 과제는 해당 정보 시스템이 제공해야 하는 기능 요건을 확정하는 일이다. 이하의 모든 개발 절차는 형성된 제공 기능을 구현하기 위한 작업이 된다. 그러나 기존 연구에서는 에너지 관리 시스템의 적용을 통해 필요한 기술적인 기능만 개발하였다가, 에너지 관리 시스템 개발이나 도입을 위해 시스템이 제공해야 할 바람직한 기능 요건을 도출하는 방법에 대한 연구는 그 중요성에 비해 활발히 이루어지지 않고 있다.

본 연구에서는 바람직한 에너지 관리 시스템 기능 요건을 도출하기 위해 벤처마킹에 의한 하향식 접근 방법에 있어서의 효과적인 진행 단계와 그 결과물을 제시하였다. 하향식 접근 방식의 장점은 비교적 단기 간에 바람직한 기능을 도출할 수 있는데, 이는 단점으로 인해 BPR (Business Process Reengineering) 프로젝트나 PI (Process Innovation) 프로젝트에서도 많이 채택하고 있는 방법이다.

본 연구는 요즈음 중요성이 부각되고 있는 에너지 관리에 대해 기존의 PDCA 관리 라이프 사이클과 유사한 사이클로 구성하여 제시하였고, 이를 근간으로 표준화 되어있지 않아 상호 비교가 어려운 상황에 에너지 관리 시스템들에 바람직한 공통 기능들을 추출하여 제시하였는데 의의를 찾을 수 있으나, 추출된 바람직한 기능 요건들의 타당성을 제시하는 부분은 한계점을 갖고 있다.

추후 연구로는 기업의 에너지 관리 담당자나 사용 시스템의 기존 사용자들을 대상으로 인터뷰 및 설문 조사 등을 통해 본 연구에서 제시된 기능 요건들의 타당성을 분석하고 보완하는 연구와 제안된 기능 요건을 구현한 국내 사례에 맞는 에너지 관리 시스템을 개발하는 것이 있다.
참 고 문 헌