DOI QR코드

DOI QR Code

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images

KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정

  • 한유경 (서울대학교 건설환경공학부) ;
  • 변영기 (한국항공우주연구원 위성정보연구센터) ;
  • 채태병 (한국항공우주연구원 위성정보연구센터 영상운영지원팀) ;
  • 김용일 (서울대학교 건설환경공학부)
  • Received : 2011.12.06
  • Accepted : 2011.12.22
  • Published : 2011.12.31

Abstract

In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

본 논문은 이종센서자료인 고해상도 KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정을 수행하는 것을 목적으로 한다. 이를 위해, 두 영상간의 x, y 방향의 초기 변위량을 MI(Mutual Information) 기법을 통해 계산한 후, 계산된 위치만큼 TerraSAR-X 영상을 이동시켜서 두 영상 간 초기 위치 차이를 최소화하였다. 초기 위치 차이가 최소화된 두 영상에서 선형정보를 추출하여 이들 간의 유사도를 판단, 매칭쌍을 추출하고자 하였다. 특히, 영상 전반에 걸쳐 고르게 분포된 매칭쌍을 추출하기 위하여, 영상 전역에 걸쳐서 동일한 크기의 격자망을 구성하여, 각 격자망에서 하나의 매칭쌍만을 추출하도록 하였다. 이렇게 추출된 매칭쌍을 이용하여 선형(rigid)과 비선형(nonrigid)의 변환식이 결합된 모델을 통해 기하보정 정확도를 높이고자 하였고, 실험 결과 모든 대상지역에서 5m 이내의 RMSE 값을 도출하였다.

Keywords

References

  1. 한유경, 변영기, 최재완, 한동엽, 김용일 (2010), 지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정, 한국측량학회지, 한국측량학회, 제 28권, 제 3호, pp. 353-359.
  2. 한유경, 김덕진, 김용일 (2011), 선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정, 대한원격탐사학회지, 대한원격탐사학회, 제 27권, 제 2호, pp. 141-150. https://doi.org/10.7780/kjrs.2011.27.2.141
  3. Arevalo, V. and Gonzalez, J. (2008), An experimental evaluation of non-rigid registration techniques on Quickbird satellite imagery, International Journal of Remote Sensing, Vol. 29, No. 2, pp. 513-527. https://doi.org/10.1080/01431160701241910
  4. Canny, J. (1986), A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698.
  5. Chen, H., Arora, M. and Varshney, P. (2003), Mutual information-based registration for remote sensing data, International Journal of Remote Sensing, Vol. 24, No. 18, pp. 3701-3706. https://doi.org/10.1080/0143116031000117047
  6. Dare, P. and Dowman, I. (2001), An improved model for automatic feature-based registration of SAR and SPOT images, Journal of Photogrammetry & Remote Sensing, Vol. 56, No. 1, pp. 13-28. https://doi.org/10.1016/S0924-2716(01)00031-4
  7. Goshtasby, A. (1986), Piecewise linear mapping functions for image registration, Pattern Recognition, Vol. 19, No.6, pp. 459-466. https://doi.org/10.1016/0031-3203(86)90044-0
  8. Hong, T. and Schowengerdt, A. (2005), A robust technique for precise registration of radar and optical satellite images, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 5, pp. 585-593. https://doi.org/10.14358/PERS.71.5.585
  9. Huang, L. and Li, Z. (2010), Feature-based image registration using the shape context, International Journal of Remote Sensing, Vol. 31, No. 8, pp. 2169-2177. https://doi.org/10.1080/01431161003621585
  10. Lee, J. (1980), Digital image enhancement and noise filtering by use of local statistics, IEEE Pattern Analysis and Machine Intelligence, Vol. 2, No. 2, pp. 165-168.
  11. Newton, W., Gurney, C., Sloggett, D. and Dowman, I. (1995), An approach to the automated identification of forests and forest change in remotely sensed images, International Archives of Photogrammetry and Remote Sensing, Vol. 30, No. 3, pp. 607-614.
  12. Reinartz, P., Müller, R., Schwind, P., Suri, S. and Bamler, R. (2011), Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, pp. 124-132. https://doi.org/10.1016/j.isprsjprs.2010.10.003
  13. Suri, S. and Reinartz, P. (2010), Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban area, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, pp. 939-949. https://doi.org/10.1109/TGRS.2009.2034842
  14. Viola, P. and Wells, W. (1997), Alignment by maximization of mutual information, International Journal of Computer Vision, Vol. 24, No. 2, pp. 137-154. https://doi.org/10.1023/A:1007958904918
  15. Zitova, B. and Flusser, J. (2003), Image registration methods: a survey, Image and Vision Computing, Vol. 21, No. 11, pp. 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9

Cited by

  1. Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique vol.30, pp.4, 2014, https://doi.org/10.7780/kjrs.2014.30.4.2
  2. IR and SAR Sensor Fusion based Target Detection using BMVT-M vol.21, pp.11, 2015, https://doi.org/10.5302/J.ICROS.2015.15.0147
  3. 고해상도 광학영상과 SAR 영상 간 자동 변위량 추정 vol.20, pp.3, 2011, https://doi.org/10.7319/kogsis.2012.20.3.041